summaryrefslogtreecommitdiff
path: root/python-sumy.spec
blob: e608f367bfc9255e63604a5217f088fbd2bebd6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
%global _empty_manifest_terminate_build 0
Name:		python-sumy
Version:	0.11.0
Release:	1
Summary:	Module for automatic summarization of text documents and HTML pages.
License:	Apache License, Version 2.0
URL:		https://github.com/miso-belica/sumy
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/df/fd/59098f716c39422d5ca47caa97ef44cd2829384bfdf22e1420e839fde3c1/sumy-0.11.0.tar.gz
BuildArch:	noarch

Requires:	python3-docopt
Requires:	python3-breadability
Requires:	python3-requests
Requires:	python3-pycountry
Requires:	python3-nltk
Requires:	python3-pyarabic
Requires:	python3-jieba
Requires:	python3-greek-stemmer-pos
Requires:	python3-hebrew-tokenizer
Requires:	python3-tinysegmenter
Requires:	python3-konlpy
Requires:	python3-numpy
Requires:	python3-numpy

%description
# Automatic text summarizer


[![image](https://github.com/miso-belica/sumy/actions/workflows/run-tests.yml/badge.svg)](https://github.com/miso-belica/sumy/actions/workflows/run-tests.yml)
[![GitPod Ready-to-Code](https://img.shields.io/badge/Gitpod-Ready--to--Code-blue?logo=gitpod)](https://gitpod.io/#https://github.com/miso-belica/sumy) 

Simple library and command line utility for extracting summary from HTML
pages or plain texts. The package also contains simple evaluation
framework for text summaries. Implemented summarization methods are described in the [documentation](docs/summarizators.md). I also maintain a list of [alternative implementations](docs/alternatives.md) of the summarizers in various programming languages.

## Is my natural language supported?
There is a [good chance](docs/index.md#Tokenizer) it is. But if not it is [not too hard to add](docs/how-to-add-new-language.md) it.

## Installation

Make sure you have [Python](http://www.python.org/) 3.6+ and
[pip](https://crate.io/packages/pip/)
([Windows](http://docs.python-guide.org/en/latest/starting/install/win/),
[Linux](http://docs.python-guide.org/en/latest/starting/install/linux/))
installed. Run simply (preferred way):

```sh
$ [sudo] pip install sumy
$ [sudo] pip install git+git://github.com/miso-belica/sumy.git  # for the fresh version
```

## Usage

Thanks to some good soul out there, the easiest way to try sumy is in your browser at https://huggingface.co/spaces/issam9/sumy_space

Sumy contains command line utility for quick summarization of documents.

```sh
$ sumy lex-rank --length=10 --url=https://en.wikipedia.org/wiki/Automatic_summarization # what's summarization?
$ sumy lex-rank --language=uk --length=30 --url=https://uk.wikipedia.org/wiki/Україна
$ sumy luhn --language=czech --url=https://www.zdrojak.cz/clanky/automaticke-zabezpeceni/
$ sumy edmundson --language=czech --length=3% --url=https://cs.wikipedia.org/wiki/Bitva_u_Lipan
$ sumy --help # for more info
```

Various evaluation methods for some summarization method can be executed
by commands below:

```sh
$ sumy_eval lex-rank reference_summary.txt --url=https://en.wikipedia.org/wiki/Automatic_summarization
$ sumy_eval lsa reference_summary.txt --language=czech --url=https://www.zdrojak.cz/clanky/automaticke-zabezpeceni/
$ sumy_eval edmundson reference_summary.txt --language=czech --url=https://cs.wikipedia.org/wiki/Bitva_u_Lipan
$ sumy_eval --help # for more info
```

If you don't want to bother by the installation, you can try it as a container.

```sh
$ docker run --rm misobelica/sumy lex-rank --length=10 --url=https://en.wikipedia.org/wiki/Automatic_summarization
```

## Python API

Or you can use sumy like a library in your project. Create file `sumy_example.py` ([don't name it `sumy.py`](https://stackoverflow.com/questions/41334622/python-sumy-no-module-named-sumy-parsers-html)) with the code below to test it.

```python
# -*- coding: utf-8 -*-

from __future__ import absolute_import
from __future__ import division, print_function, unicode_literals

from sumy.parsers.html import HtmlParser
from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer
from sumy.summarizers.lsa import LsaSummarizer as Summarizer
from sumy.nlp.stemmers import Stemmer
from sumy.utils import get_stop_words


LANGUAGE = "english"
SENTENCES_COUNT = 10


if __name__ == "__main__":
    url = "https://en.wikipedia.org/wiki/Automatic_summarization"
    parser = HtmlParser.from_url(url, Tokenizer(LANGUAGE))
    # or for plain text files
    # parser = PlaintextParser.from_file("document.txt", Tokenizer(LANGUAGE))
    # parser = PlaintextParser.from_string("Check this out.", Tokenizer(LANGUAGE))
    stemmer = Stemmer(LANGUAGE)

    summarizer = Summarizer(stemmer)
    summarizer.stop_words = get_stop_words(LANGUAGE)

    for sentence in summarizer(parser.document, SENTENCES_COUNT):
        print(sentence)
```

## Interesting projects using sumy

I found some interesting projects while browsing the internet or sometimes people wrote me an e-mail with questions, and I was curious how they use the sumy :)

* [Learning to generate questions from text](https://software.intel.com/en-us/articles/using-natural-language-processing-for-smart-question-generation) - https://github.com/adityasarvaiya/Automatic_Question_Generation
* Summarize your video to any duration - https://github.com/aswanthkoleri/VideoMash and similar https://github.com/OpenGenus/vidsum
* Tool for collectively summarizing large discussions - https://github.com/amyxzhang/wikum


%package -n python3-sumy
Summary:	Module for automatic summarization of text documents and HTML pages.
Provides:	python-sumy
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-sumy
# Automatic text summarizer


[![image](https://github.com/miso-belica/sumy/actions/workflows/run-tests.yml/badge.svg)](https://github.com/miso-belica/sumy/actions/workflows/run-tests.yml)
[![GitPod Ready-to-Code](https://img.shields.io/badge/Gitpod-Ready--to--Code-blue?logo=gitpod)](https://gitpod.io/#https://github.com/miso-belica/sumy) 

Simple library and command line utility for extracting summary from HTML
pages or plain texts. The package also contains simple evaluation
framework for text summaries. Implemented summarization methods are described in the [documentation](docs/summarizators.md). I also maintain a list of [alternative implementations](docs/alternatives.md) of the summarizers in various programming languages.

## Is my natural language supported?
There is a [good chance](docs/index.md#Tokenizer) it is. But if not it is [not too hard to add](docs/how-to-add-new-language.md) it.

## Installation

Make sure you have [Python](http://www.python.org/) 3.6+ and
[pip](https://crate.io/packages/pip/)
([Windows](http://docs.python-guide.org/en/latest/starting/install/win/),
[Linux](http://docs.python-guide.org/en/latest/starting/install/linux/))
installed. Run simply (preferred way):

```sh
$ [sudo] pip install sumy
$ [sudo] pip install git+git://github.com/miso-belica/sumy.git  # for the fresh version
```

## Usage

Thanks to some good soul out there, the easiest way to try sumy is in your browser at https://huggingface.co/spaces/issam9/sumy_space

Sumy contains command line utility for quick summarization of documents.

```sh
$ sumy lex-rank --length=10 --url=https://en.wikipedia.org/wiki/Automatic_summarization # what's summarization?
$ sumy lex-rank --language=uk --length=30 --url=https://uk.wikipedia.org/wiki/Україна
$ sumy luhn --language=czech --url=https://www.zdrojak.cz/clanky/automaticke-zabezpeceni/
$ sumy edmundson --language=czech --length=3% --url=https://cs.wikipedia.org/wiki/Bitva_u_Lipan
$ sumy --help # for more info
```

Various evaluation methods for some summarization method can be executed
by commands below:

```sh
$ sumy_eval lex-rank reference_summary.txt --url=https://en.wikipedia.org/wiki/Automatic_summarization
$ sumy_eval lsa reference_summary.txt --language=czech --url=https://www.zdrojak.cz/clanky/automaticke-zabezpeceni/
$ sumy_eval edmundson reference_summary.txt --language=czech --url=https://cs.wikipedia.org/wiki/Bitva_u_Lipan
$ sumy_eval --help # for more info
```

If you don't want to bother by the installation, you can try it as a container.

```sh
$ docker run --rm misobelica/sumy lex-rank --length=10 --url=https://en.wikipedia.org/wiki/Automatic_summarization
```

## Python API

Or you can use sumy like a library in your project. Create file `sumy_example.py` ([don't name it `sumy.py`](https://stackoverflow.com/questions/41334622/python-sumy-no-module-named-sumy-parsers-html)) with the code below to test it.

```python
# -*- coding: utf-8 -*-

from __future__ import absolute_import
from __future__ import division, print_function, unicode_literals

from sumy.parsers.html import HtmlParser
from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer
from sumy.summarizers.lsa import LsaSummarizer as Summarizer
from sumy.nlp.stemmers import Stemmer
from sumy.utils import get_stop_words


LANGUAGE = "english"
SENTENCES_COUNT = 10


if __name__ == "__main__":
    url = "https://en.wikipedia.org/wiki/Automatic_summarization"
    parser = HtmlParser.from_url(url, Tokenizer(LANGUAGE))
    # or for plain text files
    # parser = PlaintextParser.from_file("document.txt", Tokenizer(LANGUAGE))
    # parser = PlaintextParser.from_string("Check this out.", Tokenizer(LANGUAGE))
    stemmer = Stemmer(LANGUAGE)

    summarizer = Summarizer(stemmer)
    summarizer.stop_words = get_stop_words(LANGUAGE)

    for sentence in summarizer(parser.document, SENTENCES_COUNT):
        print(sentence)
```

## Interesting projects using sumy

I found some interesting projects while browsing the internet or sometimes people wrote me an e-mail with questions, and I was curious how they use the sumy :)

* [Learning to generate questions from text](https://software.intel.com/en-us/articles/using-natural-language-processing-for-smart-question-generation) - https://github.com/adityasarvaiya/Automatic_Question_Generation
* Summarize your video to any duration - https://github.com/aswanthkoleri/VideoMash and similar https://github.com/OpenGenus/vidsum
* Tool for collectively summarizing large discussions - https://github.com/amyxzhang/wikum


%package help
Summary:	Development documents and examples for sumy
Provides:	python3-sumy-doc
%description help
# Automatic text summarizer


[![image](https://github.com/miso-belica/sumy/actions/workflows/run-tests.yml/badge.svg)](https://github.com/miso-belica/sumy/actions/workflows/run-tests.yml)
[![GitPod Ready-to-Code](https://img.shields.io/badge/Gitpod-Ready--to--Code-blue?logo=gitpod)](https://gitpod.io/#https://github.com/miso-belica/sumy) 

Simple library and command line utility for extracting summary from HTML
pages or plain texts. The package also contains simple evaluation
framework for text summaries. Implemented summarization methods are described in the [documentation](docs/summarizators.md). I also maintain a list of [alternative implementations](docs/alternatives.md) of the summarizers in various programming languages.

## Is my natural language supported?
There is a [good chance](docs/index.md#Tokenizer) it is. But if not it is [not too hard to add](docs/how-to-add-new-language.md) it.

## Installation

Make sure you have [Python](http://www.python.org/) 3.6+ and
[pip](https://crate.io/packages/pip/)
([Windows](http://docs.python-guide.org/en/latest/starting/install/win/),
[Linux](http://docs.python-guide.org/en/latest/starting/install/linux/))
installed. Run simply (preferred way):

```sh
$ [sudo] pip install sumy
$ [sudo] pip install git+git://github.com/miso-belica/sumy.git  # for the fresh version
```

## Usage

Thanks to some good soul out there, the easiest way to try sumy is in your browser at https://huggingface.co/spaces/issam9/sumy_space

Sumy contains command line utility for quick summarization of documents.

```sh
$ sumy lex-rank --length=10 --url=https://en.wikipedia.org/wiki/Automatic_summarization # what's summarization?
$ sumy lex-rank --language=uk --length=30 --url=https://uk.wikipedia.org/wiki/Україна
$ sumy luhn --language=czech --url=https://www.zdrojak.cz/clanky/automaticke-zabezpeceni/
$ sumy edmundson --language=czech --length=3% --url=https://cs.wikipedia.org/wiki/Bitva_u_Lipan
$ sumy --help # for more info
```

Various evaluation methods for some summarization method can be executed
by commands below:

```sh
$ sumy_eval lex-rank reference_summary.txt --url=https://en.wikipedia.org/wiki/Automatic_summarization
$ sumy_eval lsa reference_summary.txt --language=czech --url=https://www.zdrojak.cz/clanky/automaticke-zabezpeceni/
$ sumy_eval edmundson reference_summary.txt --language=czech --url=https://cs.wikipedia.org/wiki/Bitva_u_Lipan
$ sumy_eval --help # for more info
```

If you don't want to bother by the installation, you can try it as a container.

```sh
$ docker run --rm misobelica/sumy lex-rank --length=10 --url=https://en.wikipedia.org/wiki/Automatic_summarization
```

## Python API

Or you can use sumy like a library in your project. Create file `sumy_example.py` ([don't name it `sumy.py`](https://stackoverflow.com/questions/41334622/python-sumy-no-module-named-sumy-parsers-html)) with the code below to test it.

```python
# -*- coding: utf-8 -*-

from __future__ import absolute_import
from __future__ import division, print_function, unicode_literals

from sumy.parsers.html import HtmlParser
from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer
from sumy.summarizers.lsa import LsaSummarizer as Summarizer
from sumy.nlp.stemmers import Stemmer
from sumy.utils import get_stop_words


LANGUAGE = "english"
SENTENCES_COUNT = 10


if __name__ == "__main__":
    url = "https://en.wikipedia.org/wiki/Automatic_summarization"
    parser = HtmlParser.from_url(url, Tokenizer(LANGUAGE))
    # or for plain text files
    # parser = PlaintextParser.from_file("document.txt", Tokenizer(LANGUAGE))
    # parser = PlaintextParser.from_string("Check this out.", Tokenizer(LANGUAGE))
    stemmer = Stemmer(LANGUAGE)

    summarizer = Summarizer(stemmer)
    summarizer.stop_words = get_stop_words(LANGUAGE)

    for sentence in summarizer(parser.document, SENTENCES_COUNT):
        print(sentence)
```

## Interesting projects using sumy

I found some interesting projects while browsing the internet or sometimes people wrote me an e-mail with questions, and I was curious how they use the sumy :)

* [Learning to generate questions from text](https://software.intel.com/en-us/articles/using-natural-language-processing-for-smart-question-generation) - https://github.com/adityasarvaiya/Automatic_Question_Generation
* Summarize your video to any duration - https://github.com/aswanthkoleri/VideoMash and similar https://github.com/OpenGenus/vidsum
* Tool for collectively summarizing large discussions - https://github.com/amyxzhang/wikum


%prep
%autosetup -n sumy-0.11.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-sumy -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.11.0-1
- Package Spec generated