1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
|
%global _empty_manifest_terminate_build 0
Name: python-tableau-hyper-management
Version: 1.5.10
Release: 1
Summary: Wrapper to ease data management into Tableau Hyper format from CSV files
License: LGPL3
URL: https://github.com/danielgp/tableau-hyper-management/releases
Source0: https://mirrors.aliyun.com/pypi/web/packages/0b/a1/6b1d2efd5fd566bf43b791bd8df5f305122ba72cdb82bf3c5d404d77f784/tableau-hyper-management-1.5.10.tar.gz
BuildArch: noarch
%description
# Tableau-Hyper-Management
[](https://scrutinizer-ci.com/g/danielgp/tableau-hyper-management/?branch=master)
[](https://scrutinizer-ci.com/g/danielgp/tableau-hyper-management/build-status/master)
[](https://crowdin.com/project/tableau-hyper-management)
## What is this repository for?
Based on [Tableau Hyper API](https://help.tableau.com/current/api/hyper_api/en-us/) this repository is intended to manage importing any CSV file into Tableau-Hyper format (to be used with Tableau Desktop/Server) with minimal configuration (as column detection, content type detection and reinterpretation of content are part of the included logic), therefore speed up the process of building extract.
Also a publishing data source script allows to take resulted Tableau Hyper file and publish it to a Tableau Server. This is possible thank to excellent Tableau supported logic: [Tableau Server Client (Python)](https://github.com/tableau/server-client-python) package.
> This features allows you to automate tedious tasks to refresh data on the server side (one real-life example could be a daily/weekly snapshot of a dynamically changing content to capture big variations in time in Development or Quality layer before reaching Production environment).
## Who do I talk to?
Repository owner is: [Daniel Popiniuc](mailto:danielpopiniuc@gmail.com)
## Implemented features
- conversion intake data from a single or multiple CSV files based on a single input parameter (can be specific or contain a file pattern);
- dynamic fields detection based ont 1st line content and provided field separator (strategic advantage);
- dynamic advanced content type detection covering following data types: integer, float-dot, date-iso8601, date-DMY-dash, date-DMY-dot, date-DMY-slash, date-MDY, date-MDY-medium, date-MDY-long, time-12, time-12-micro-sec, time-24, time-24-micro-sec, datetime-iso8601, datetime-iso8601-micro-sec, datetime-MDY, datetime-MDY-micro-sec, datetime-MDY-medium, datetime-MDY-medium-micro-sec, datetime-MDY-long, datetime-MDY-long-micro-sec, string;
- support for empty field content for any data type (required re-interpreting CSV to be accepted by Hyper Inserter to ensure INT or DOUBLE data types are considered);
- use Panda package to benefit of Data Frames speed and flexibility;
- log file to capture entire logic details (very useful for either traceability but also debugging);
- most of the logic actions are not timed for performance measuring so you can plan better your needs;
- publishing a Tableau Extract (Hyper format) to a Tableau Server (specifying Site and Project);
- detection of operating system current region language and log all feedback details using that.
## Combinations of file types supported
| Output (right)<br>File Type/Format<br>Input (down) | Comma Separated Values | Excel | JSON | Parquet | Pickle | Tableau Extract (Hyper) |
|:-------------------------|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|
| Comma Separated Values | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| Excel | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :no_entry: |
| JSON | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :no_entry: |
| Parquet | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| Pickle | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| Tableau Extract (Hyper) | :heavy_check_mark: | :no_entry: | :no_entry: | :no_entry: | :heavy_check_mark: | :soon: |
## Installation
Installation can be completed in few steps as follows:
* Ensure you have git available to your system:
```
$ git --version
```
> If you get an error depending on your system you need to install it.
>> For Windows you can do so from [Git for Windows](https://github.com/git-for-windows/git/releases/);
* Download this project from Github:
```
$ git clone https://github.com/danielgp/tableau-hyper-management <local_path_of_this_package>
```
> conventions used:
>> <content_within_html_tags> = variables to be replaced with user values relevant strings
* Create a Python Virtual Environment using following command executed from project root folder:
```
$ python(.exe) -m venv <local_folder_on_your_computer_for_this_package>/virtual_environment/
```
* Upgrade pip (PIP is a package manager for Python packages) and SetupTools using following command executed from newly created virtual environment and Scripts sub-folder:
```
$ <local_path_of_this_package>/virtual_environment/Scripts/python(.exe) -m pip install --upgrade pip
$ <local_path_of_this_package>/virtual_environment/Scripts/pip(.exe) install --upgrade setuptools
```
* Install project prerequisites using following command executed from project root folder:
```
$ <local_path_of_this_package>/virtual_environment/Scripts/python(.exe) <local_path_of_this_package>/setup.py install
```
* Ensure all localization source files are compile properly in order for the package to work properly
```
$ <local_path_of_this_package>/virtual_environment/Scripts/python(.exe) <local_path_of_this_package>/sources/localizations_compile.py
```
## Maintaining local package up-to-date
Once the package is installed is quite important to keep up with latest releases as such are addressing important code improvements and potential security issues, and this can be achieved by following command:
```
$ git --work-tree=<local_path_of_this_package> --git-dir=<local_path_of_this_package>/.git/ --no-pager pull origin master
```
- conventions used:
- <content_within_html_tags> = variables to be replaced with user values relevant strings
## Usage
### Converting CSV file into Tableau Extract (Hyper format)
```
$ <local_path_of_this_package>/virtual_environment/Scripts/python(.exe) <local_path_of_this_package>/tableau_hyper_management/converter.py --input-file <full_path_and_file_base_name_to_file_having_content_as_CSV> --input-file-format csv|excel|json|pickle --input-file-compression infer|bz2|gzip|xz|zip --csv-field-separator ,|; --output-file <full_path_and_file_base_name_to_generated_file>(.hyper) --output-file-format csv|excel|hyper|json|pickle --output-file-compression infer|bz2|gzip|xz|zip (--output-log-file <full_path_and_file_name_to_log_running_details>) (--unique-values-to-analyze-limit 100|200=default_value_if_omitted|500|1000)
```
- conventions used:
- (content_within_round_parenthesis) = optional
- <content_within_html_tags> = variables to be replaced with user values relevant strings
- single vertical pipeline = separator for alternative options
### Publishing a Tableau Extract (Hyper format) to a Tableau Server
```
$ <local_path_of_this_package>/virtual_environment/Scripts/python(.exe) <local_path_of_this_package>/tableau_hyper_management/publish_data_source.py --input-file <full_path_and_file_base_name_with_tableau_extract>(.hyper) --tableau-server <tableau_server_url> --tableau-site <tableau_server_site_to_publish_to> --tableau-project <tableau_server_project_to_publish_to> --publishing-mode Append|CreateNew|Overwrite==default_if_omitted --input-credentials-file %credentials_file% (--output-log-file <full_path_and_file_name_to_log_running_details>)
```
- conventions used:
- (content_within_round_parenthesis) = optional
- <content_within_html_tags> = variables to be replaced with user values relevant strings
- single vertical pipeline = separator for alternative options
## Change Log / Releases detailed
see [CHANGE_LOG.md](CHANGE_LOG.md)
## Planned features to add (of course, when time will permit / help would be appreciated / votes|feedback is welcomed)
- additional formats to be recognized, like:
- float-USA-thousand-separator,
- float-EU,
- float-EU-thousand-separator;
- geographical identifiers (Country, US - Zip Codes)
## Features to request template
Use [feature_request.md](.github/ISSUE_TEMPLATE/feature_request.md)
## Required software/drivers/configurations
see [readme_software.md](readme_software.md)
## Used references
see [readme_reference.md](readme_reference.md)
%package -n python3-tableau-hyper-management
Summary: Wrapper to ease data management into Tableau Hyper format from CSV files
Provides: python-tableau-hyper-management
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-tableau-hyper-management
# Tableau-Hyper-Management
[](https://scrutinizer-ci.com/g/danielgp/tableau-hyper-management/?branch=master)
[](https://scrutinizer-ci.com/g/danielgp/tableau-hyper-management/build-status/master)
[](https://crowdin.com/project/tableau-hyper-management)
## What is this repository for?
Based on [Tableau Hyper API](https://help.tableau.com/current/api/hyper_api/en-us/) this repository is intended to manage importing any CSV file into Tableau-Hyper format (to be used with Tableau Desktop/Server) with minimal configuration (as column detection, content type detection and reinterpretation of content are part of the included logic), therefore speed up the process of building extract.
Also a publishing data source script allows to take resulted Tableau Hyper file and publish it to a Tableau Server. This is possible thank to excellent Tableau supported logic: [Tableau Server Client (Python)](https://github.com/tableau/server-client-python) package.
> This features allows you to automate tedious tasks to refresh data on the server side (one real-life example could be a daily/weekly snapshot of a dynamically changing content to capture big variations in time in Development or Quality layer before reaching Production environment).
## Who do I talk to?
Repository owner is: [Daniel Popiniuc](mailto:danielpopiniuc@gmail.com)
## Implemented features
- conversion intake data from a single or multiple CSV files based on a single input parameter (can be specific or contain a file pattern);
- dynamic fields detection based ont 1st line content and provided field separator (strategic advantage);
- dynamic advanced content type detection covering following data types: integer, float-dot, date-iso8601, date-DMY-dash, date-DMY-dot, date-DMY-slash, date-MDY, date-MDY-medium, date-MDY-long, time-12, time-12-micro-sec, time-24, time-24-micro-sec, datetime-iso8601, datetime-iso8601-micro-sec, datetime-MDY, datetime-MDY-micro-sec, datetime-MDY-medium, datetime-MDY-medium-micro-sec, datetime-MDY-long, datetime-MDY-long-micro-sec, string;
- support for empty field content for any data type (required re-interpreting CSV to be accepted by Hyper Inserter to ensure INT or DOUBLE data types are considered);
- use Panda package to benefit of Data Frames speed and flexibility;
- log file to capture entire logic details (very useful for either traceability but also debugging);
- most of the logic actions are not timed for performance measuring so you can plan better your needs;
- publishing a Tableau Extract (Hyper format) to a Tableau Server (specifying Site and Project);
- detection of operating system current region language and log all feedback details using that.
## Combinations of file types supported
| Output (right)<br>File Type/Format<br>Input (down) | Comma Separated Values | Excel | JSON | Parquet | Pickle | Tableau Extract (Hyper) |
|:-------------------------|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|
| Comma Separated Values | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| Excel | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :no_entry: |
| JSON | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :no_entry: |
| Parquet | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| Pickle | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| Tableau Extract (Hyper) | :heavy_check_mark: | :no_entry: | :no_entry: | :no_entry: | :heavy_check_mark: | :soon: |
## Installation
Installation can be completed in few steps as follows:
* Ensure you have git available to your system:
```
$ git --version
```
> If you get an error depending on your system you need to install it.
>> For Windows you can do so from [Git for Windows](https://github.com/git-for-windows/git/releases/);
* Download this project from Github:
```
$ git clone https://github.com/danielgp/tableau-hyper-management <local_path_of_this_package>
```
> conventions used:
>> <content_within_html_tags> = variables to be replaced with user values relevant strings
* Create a Python Virtual Environment using following command executed from project root folder:
```
$ python(.exe) -m venv <local_folder_on_your_computer_for_this_package>/virtual_environment/
```
* Upgrade pip (PIP is a package manager for Python packages) and SetupTools using following command executed from newly created virtual environment and Scripts sub-folder:
```
$ <local_path_of_this_package>/virtual_environment/Scripts/python(.exe) -m pip install --upgrade pip
$ <local_path_of_this_package>/virtual_environment/Scripts/pip(.exe) install --upgrade setuptools
```
* Install project prerequisites using following command executed from project root folder:
```
$ <local_path_of_this_package>/virtual_environment/Scripts/python(.exe) <local_path_of_this_package>/setup.py install
```
* Ensure all localization source files are compile properly in order for the package to work properly
```
$ <local_path_of_this_package>/virtual_environment/Scripts/python(.exe) <local_path_of_this_package>/sources/localizations_compile.py
```
## Maintaining local package up-to-date
Once the package is installed is quite important to keep up with latest releases as such are addressing important code improvements and potential security issues, and this can be achieved by following command:
```
$ git --work-tree=<local_path_of_this_package> --git-dir=<local_path_of_this_package>/.git/ --no-pager pull origin master
```
- conventions used:
- <content_within_html_tags> = variables to be replaced with user values relevant strings
## Usage
### Converting CSV file into Tableau Extract (Hyper format)
```
$ <local_path_of_this_package>/virtual_environment/Scripts/python(.exe) <local_path_of_this_package>/tableau_hyper_management/converter.py --input-file <full_path_and_file_base_name_to_file_having_content_as_CSV> --input-file-format csv|excel|json|pickle --input-file-compression infer|bz2|gzip|xz|zip --csv-field-separator ,|; --output-file <full_path_and_file_base_name_to_generated_file>(.hyper) --output-file-format csv|excel|hyper|json|pickle --output-file-compression infer|bz2|gzip|xz|zip (--output-log-file <full_path_and_file_name_to_log_running_details>) (--unique-values-to-analyze-limit 100|200=default_value_if_omitted|500|1000)
```
- conventions used:
- (content_within_round_parenthesis) = optional
- <content_within_html_tags> = variables to be replaced with user values relevant strings
- single vertical pipeline = separator for alternative options
### Publishing a Tableau Extract (Hyper format) to a Tableau Server
```
$ <local_path_of_this_package>/virtual_environment/Scripts/python(.exe) <local_path_of_this_package>/tableau_hyper_management/publish_data_source.py --input-file <full_path_and_file_base_name_with_tableau_extract>(.hyper) --tableau-server <tableau_server_url> --tableau-site <tableau_server_site_to_publish_to> --tableau-project <tableau_server_project_to_publish_to> --publishing-mode Append|CreateNew|Overwrite==default_if_omitted --input-credentials-file %credentials_file% (--output-log-file <full_path_and_file_name_to_log_running_details>)
```
- conventions used:
- (content_within_round_parenthesis) = optional
- <content_within_html_tags> = variables to be replaced with user values relevant strings
- single vertical pipeline = separator for alternative options
## Change Log / Releases detailed
see [CHANGE_LOG.md](CHANGE_LOG.md)
## Planned features to add (of course, when time will permit / help would be appreciated / votes|feedback is welcomed)
- additional formats to be recognized, like:
- float-USA-thousand-separator,
- float-EU,
- float-EU-thousand-separator;
- geographical identifiers (Country, US - Zip Codes)
## Features to request template
Use [feature_request.md](.github/ISSUE_TEMPLATE/feature_request.md)
## Required software/drivers/configurations
see [readme_software.md](readme_software.md)
## Used references
see [readme_reference.md](readme_reference.md)
%package help
Summary: Development documents and examples for tableau-hyper-management
Provides: python3-tableau-hyper-management-doc
%description help
# Tableau-Hyper-Management
[](https://scrutinizer-ci.com/g/danielgp/tableau-hyper-management/?branch=master)
[](https://scrutinizer-ci.com/g/danielgp/tableau-hyper-management/build-status/master)
[](https://crowdin.com/project/tableau-hyper-management)
## What is this repository for?
Based on [Tableau Hyper API](https://help.tableau.com/current/api/hyper_api/en-us/) this repository is intended to manage importing any CSV file into Tableau-Hyper format (to be used with Tableau Desktop/Server) with minimal configuration (as column detection, content type detection and reinterpretation of content are part of the included logic), therefore speed up the process of building extract.
Also a publishing data source script allows to take resulted Tableau Hyper file and publish it to a Tableau Server. This is possible thank to excellent Tableau supported logic: [Tableau Server Client (Python)](https://github.com/tableau/server-client-python) package.
> This features allows you to automate tedious tasks to refresh data on the server side (one real-life example could be a daily/weekly snapshot of a dynamically changing content to capture big variations in time in Development or Quality layer before reaching Production environment).
## Who do I talk to?
Repository owner is: [Daniel Popiniuc](mailto:danielpopiniuc@gmail.com)
## Implemented features
- conversion intake data from a single or multiple CSV files based on a single input parameter (can be specific or contain a file pattern);
- dynamic fields detection based ont 1st line content and provided field separator (strategic advantage);
- dynamic advanced content type detection covering following data types: integer, float-dot, date-iso8601, date-DMY-dash, date-DMY-dot, date-DMY-slash, date-MDY, date-MDY-medium, date-MDY-long, time-12, time-12-micro-sec, time-24, time-24-micro-sec, datetime-iso8601, datetime-iso8601-micro-sec, datetime-MDY, datetime-MDY-micro-sec, datetime-MDY-medium, datetime-MDY-medium-micro-sec, datetime-MDY-long, datetime-MDY-long-micro-sec, string;
- support for empty field content for any data type (required re-interpreting CSV to be accepted by Hyper Inserter to ensure INT or DOUBLE data types are considered);
- use Panda package to benefit of Data Frames speed and flexibility;
- log file to capture entire logic details (very useful for either traceability but also debugging);
- most of the logic actions are not timed for performance measuring so you can plan better your needs;
- publishing a Tableau Extract (Hyper format) to a Tableau Server (specifying Site and Project);
- detection of operating system current region language and log all feedback details using that.
## Combinations of file types supported
| Output (right)<br>File Type/Format<br>Input (down) | Comma Separated Values | Excel | JSON | Parquet | Pickle | Tableau Extract (Hyper) |
|:-------------------------|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|
| Comma Separated Values | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| Excel | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :no_entry: |
| JSON | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :no_entry: |
| Parquet | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| Pickle | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| Tableau Extract (Hyper) | :heavy_check_mark: | :no_entry: | :no_entry: | :no_entry: | :heavy_check_mark: | :soon: |
## Installation
Installation can be completed in few steps as follows:
* Ensure you have git available to your system:
```
$ git --version
```
> If you get an error depending on your system you need to install it.
>> For Windows you can do so from [Git for Windows](https://github.com/git-for-windows/git/releases/);
* Download this project from Github:
```
$ git clone https://github.com/danielgp/tableau-hyper-management <local_path_of_this_package>
```
> conventions used:
>> <content_within_html_tags> = variables to be replaced with user values relevant strings
* Create a Python Virtual Environment using following command executed from project root folder:
```
$ python(.exe) -m venv <local_folder_on_your_computer_for_this_package>/virtual_environment/
```
* Upgrade pip (PIP is a package manager for Python packages) and SetupTools using following command executed from newly created virtual environment and Scripts sub-folder:
```
$ <local_path_of_this_package>/virtual_environment/Scripts/python(.exe) -m pip install --upgrade pip
$ <local_path_of_this_package>/virtual_environment/Scripts/pip(.exe) install --upgrade setuptools
```
* Install project prerequisites using following command executed from project root folder:
```
$ <local_path_of_this_package>/virtual_environment/Scripts/python(.exe) <local_path_of_this_package>/setup.py install
```
* Ensure all localization source files are compile properly in order for the package to work properly
```
$ <local_path_of_this_package>/virtual_environment/Scripts/python(.exe) <local_path_of_this_package>/sources/localizations_compile.py
```
## Maintaining local package up-to-date
Once the package is installed is quite important to keep up with latest releases as such are addressing important code improvements and potential security issues, and this can be achieved by following command:
```
$ git --work-tree=<local_path_of_this_package> --git-dir=<local_path_of_this_package>/.git/ --no-pager pull origin master
```
- conventions used:
- <content_within_html_tags> = variables to be replaced with user values relevant strings
## Usage
### Converting CSV file into Tableau Extract (Hyper format)
```
$ <local_path_of_this_package>/virtual_environment/Scripts/python(.exe) <local_path_of_this_package>/tableau_hyper_management/converter.py --input-file <full_path_and_file_base_name_to_file_having_content_as_CSV> --input-file-format csv|excel|json|pickle --input-file-compression infer|bz2|gzip|xz|zip --csv-field-separator ,|; --output-file <full_path_and_file_base_name_to_generated_file>(.hyper) --output-file-format csv|excel|hyper|json|pickle --output-file-compression infer|bz2|gzip|xz|zip (--output-log-file <full_path_and_file_name_to_log_running_details>) (--unique-values-to-analyze-limit 100|200=default_value_if_omitted|500|1000)
```
- conventions used:
- (content_within_round_parenthesis) = optional
- <content_within_html_tags> = variables to be replaced with user values relevant strings
- single vertical pipeline = separator for alternative options
### Publishing a Tableau Extract (Hyper format) to a Tableau Server
```
$ <local_path_of_this_package>/virtual_environment/Scripts/python(.exe) <local_path_of_this_package>/tableau_hyper_management/publish_data_source.py --input-file <full_path_and_file_base_name_with_tableau_extract>(.hyper) --tableau-server <tableau_server_url> --tableau-site <tableau_server_site_to_publish_to> --tableau-project <tableau_server_project_to_publish_to> --publishing-mode Append|CreateNew|Overwrite==default_if_omitted --input-credentials-file %credentials_file% (--output-log-file <full_path_and_file_name_to_log_running_details>)
```
- conventions used:
- (content_within_round_parenthesis) = optional
- <content_within_html_tags> = variables to be replaced with user values relevant strings
- single vertical pipeline = separator for alternative options
## Change Log / Releases detailed
see [CHANGE_LOG.md](CHANGE_LOG.md)
## Planned features to add (of course, when time will permit / help would be appreciated / votes|feedback is welcomed)
- additional formats to be recognized, like:
- float-USA-thousand-separator,
- float-EU,
- float-EU-thousand-separator;
- geographical identifiers (Country, US - Zip Codes)
## Features to request template
Use [feature_request.md](.github/ISSUE_TEMPLATE/feature_request.md)
## Required software/drivers/configurations
see [readme_software.md](readme_software.md)
## Used references
see [readme_reference.md](readme_reference.md)
%prep
%autosetup -n tableau-hyper-management-1.5.10
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-tableau-hyper-management -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 1.5.10-1
- Package Spec generated
|