summaryrefslogtreecommitdiff
path: root/python-tdub.spec
blob: 0de3eddf618739fa20836a950b27d2c97355adc3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
%global _empty_manifest_terminate_build 0
Name:		python-tdub
Version:	0.0.79
Release:	1
Summary:	tW analysis tools.
License:	BSD 3-clause
URL:		https://github.com/douglasdavis/tdub
Source0:	https://mirrors.aliyun.com/pypi/web/packages/95/eb/57e2f7c6f6f6f2089b5c4a5c3b235e327876a25015d0aec35d0bd7a2bd85/tdub-0.0.79.tar.gz
BuildArch:	noarch

Requires:	python3-click
Requires:	python3-formulate
Requires:	python3-joblib
Requires:	python3-lz4
Requires:	python3-matplotlib
Requires:	python3-numexpr
Requires:	python3-pandas
Requires:	python3-pycondor
Requires:	python3-pygram11
Requires:	python3-pyyaml
Requires:	python3-scikit-learn
Requires:	python3-uproot
Requires:	python3-xxhash
Requires:	python3-requests

%description
# tdub

[![Actions Status](https://github.com/douglasdavis/tdub/workflows/Linux/macOS/badge.svg)](https://github.com/douglasdavis/tdub/actions)
[![Documentation Status](https://readthedocs.org/projects/tdub/badge/?version=latest)](https://tdub.readthedocs.io/)
[![PyPI](https://img.shields.io/pypi/v/tdub?color=teal)](https://pypi.org/project/tdub/)
[![Python Version](https://img.shields.io/pypi/pyversions/tdub)](https://pypi.org/project/tdub/)

`tdub` is a Python project for handling some downstsream steps in the
ATLAS Run 2 *tW* inclusive cross section analysis. The project provides
a simple command line interface for performing standard analysis tasks
including:

- BDT feature selection and hyperparameter optimization.
- Training BDT models on our Monte Carlo.
- Applying trained BDT models to our data and Monte Carlo.
- Generating plots from various raw sources (our ROOT files and
  Classifier training output).
- Generating plots from the output of
  [`TRExFitter`](https://gitlab.cern.ch/TRExStats/TRExFitter/).

For potentially finer-grained tasks the API is fully documented. The
API mainly provides quick and easy access to pythonic representations
(i.e. dataframes or NumPy arrays) of our datasets (which of course
originate from [ROOT](https://root.cern/) files), modularized ML
tasks, and a set of utilities tailored for interacting with our
specific datasets.


%package -n python3-tdub
Summary:	tW analysis tools.
Provides:	python-tdub
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-tdub
# tdub

[![Actions Status](https://github.com/douglasdavis/tdub/workflows/Linux/macOS/badge.svg)](https://github.com/douglasdavis/tdub/actions)
[![Documentation Status](https://readthedocs.org/projects/tdub/badge/?version=latest)](https://tdub.readthedocs.io/)
[![PyPI](https://img.shields.io/pypi/v/tdub?color=teal)](https://pypi.org/project/tdub/)
[![Python Version](https://img.shields.io/pypi/pyversions/tdub)](https://pypi.org/project/tdub/)

`tdub` is a Python project for handling some downstsream steps in the
ATLAS Run 2 *tW* inclusive cross section analysis. The project provides
a simple command line interface for performing standard analysis tasks
including:

- BDT feature selection and hyperparameter optimization.
- Training BDT models on our Monte Carlo.
- Applying trained BDT models to our data and Monte Carlo.
- Generating plots from various raw sources (our ROOT files and
  Classifier training output).
- Generating plots from the output of
  [`TRExFitter`](https://gitlab.cern.ch/TRExStats/TRExFitter/).

For potentially finer-grained tasks the API is fully documented. The
API mainly provides quick and easy access to pythonic representations
(i.e. dataframes or NumPy arrays) of our datasets (which of course
originate from [ROOT](https://root.cern/) files), modularized ML
tasks, and a set of utilities tailored for interacting with our
specific datasets.


%package help
Summary:	Development documents and examples for tdub
Provides:	python3-tdub-doc
%description help
# tdub

[![Actions Status](https://github.com/douglasdavis/tdub/workflows/Linux/macOS/badge.svg)](https://github.com/douglasdavis/tdub/actions)
[![Documentation Status](https://readthedocs.org/projects/tdub/badge/?version=latest)](https://tdub.readthedocs.io/)
[![PyPI](https://img.shields.io/pypi/v/tdub?color=teal)](https://pypi.org/project/tdub/)
[![Python Version](https://img.shields.io/pypi/pyversions/tdub)](https://pypi.org/project/tdub/)

`tdub` is a Python project for handling some downstsream steps in the
ATLAS Run 2 *tW* inclusive cross section analysis. The project provides
a simple command line interface for performing standard analysis tasks
including:

- BDT feature selection and hyperparameter optimization.
- Training BDT models on our Monte Carlo.
- Applying trained BDT models to our data and Monte Carlo.
- Generating plots from various raw sources (our ROOT files and
  Classifier training output).
- Generating plots from the output of
  [`TRExFitter`](https://gitlab.cern.ch/TRExStats/TRExFitter/).

For potentially finer-grained tasks the API is fully documented. The
API mainly provides quick and easy access to pythonic representations
(i.e. dataframes or NumPy arrays) of our datasets (which of course
originate from [ROOT](https://root.cern/) files), modularized ML
tasks, and a set of utilities tailored for interacting with our
specific datasets.


%prep
%autosetup -n tdub-0.0.79

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-tdub -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.79-1
- Package Spec generated