summaryrefslogtreecommitdiff
path: root/python-tdyno.spec
blob: 69eb451fd01590395c9dd6cd419d47a4a10ddfbf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
%global _empty_manifest_terminate_build 0
Name:		python-tdyno
Version:	0.1.7
Release:	1
Summary:	FDTD with dynamic modulations in the refractive index or the gain/loss in materials.
License:	GNU Affero General Public License v3 or later (AGPLv3+)
URL:		https://github.com/alexysong/tdyno
Source0:	https://mirrors.aliyun.com/pypi/web/packages/bb/4c/55637ab9a8a1c7e44bfd3d1cbda574e482713136c0bc1a2994d47bb6f657/tdyno-0.1.7.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-matplotlib

%description
**T-Dyno** is a 2D finite-difference time-domain (FDTD) package. 
Apart from conventional FDTD functionalities, TDyno is capable of applying dynamic modulations in both the real and the imaginary parts of the permittivity, i.e. having index modulations and gain/loss modulations.
It can thus simulate dynamically modulated optical devices such as  isolators, circulators, directional absorbers, and nonreciprocal amplifiers in the time-domain.
## Features
T-Dyno natively supports the following features:
*   point sources
*   Total-field scattered-field (TF/SF) sources and directional plane-wave souces with the following temporal profiles:
    *   continuous waves (cw)
    *   Gaussian pulses
    *   wave packets, i.e. Gaussian modulated cw waves
*   Convolutional perfectly matched layers (CPML)
*   Supported materials:
    *   dispersionless lossy/lossless dielectrics
    *   dispersive dielectrics (Lorentz model)
    *   metal (Drude model)
    *   dynamically modulated refractive index
    *   dynamically modulated gain and loss
*   Shapes:
    *   rectangle
    *   circular
    *   ring
    *   wedge
*   Monitors
    Point monitors: weighted sum of the wave amplitudes on a set of points. Can the energy spectral density, power spectral density, number flux spectrum and number flux rate spectrum.
    Poynting energy flux monitor: monitor the real-time energy flux through a box or any edges of the box, from inside to outside. Calculate the frequency-space integral Poynting flux spectrum.
*   User interface
    Simple user interface where you can start, pause, reset, save plot, record videos, and save monitor data.
## Install
    $ pip install tdyno
Or,
    $ git clone git://github.com/alexsong/tdyno
    $ pip install .
## Requirements
-   Python 2.7 or >= 3.6
-   Numpy >= 1.11.3
-   matplotlib >= 2.0.0
-   scipy >= 0.19.0
-   for recording videos, need to install `ffmpeg`.
## Usage
The `examples` in the `examples/` folder are the easiest places to get started with the package. 
*   `fdtd_2d.py`
    It's recommended that you go through `fdtd_2d.py` first, then move on to other examples. 
    `fdtd_2d.py` contains a detailed explanation of the basic functionalities of the package. It contains: point sources and a TF/SF source with different source temporal profiles, PML absorbing boundary condition, and different types of materials and geometries to build a structure.
    https://user-images.githubusercontent.com/55603472/130169577-fa837496-456e-4b95-bf7c-93633b9a2fc7.mp4
*   `ring_coupler.py`
    This is an example of a ring resonator coupled to input/output waveguides.
*   `waveguide_2d_dynamic_modulation.py` 
    This example contains a waveguide under dynamic modulations. The modulation can be in the refractive index or in the gain/loss.
    This example also contain several point monitors and a Poynting monitor to measure wave intensities and calculate the spectrum.
    https://user-images.githubusercontent.com/55603472/130178495-1d9e19fb-0cf3-4a73-9e2b-c7f018962742.mp4
## Citing
If you find T-Dyno useful for your research, we would apprecite you citing our [paper](https://doi.org/10.1103/PhysRevA.99.013824). For your convenience, you can use the following BibTex entry:
```
@article{song2019dynamic,
  title={Direction-dependent parity-time phase transition and nonreciprocal amplification with dynamic gain-loss modulation},
  author={Song, Alex Y. and Shi, Yu and Lin, Qian and Fan, Shanhui},
  journal={Physical Review A},
  volume={99},
  issue={1},
  pages={013824},
  numpages={7},
  year={2019},
  month={Jan},
  publisher={American Physical Society},
  doi={10.1103/PhysRevA.99.013824},
  url={https://link.aps.org/doi/10.1103/PhysRevA.99.013824}
}
```

%package -n python3-tdyno
Summary:	FDTD with dynamic modulations in the refractive index or the gain/loss in materials.
Provides:	python-tdyno
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-tdyno
**T-Dyno** is a 2D finite-difference time-domain (FDTD) package. 
Apart from conventional FDTD functionalities, TDyno is capable of applying dynamic modulations in both the real and the imaginary parts of the permittivity, i.e. having index modulations and gain/loss modulations.
It can thus simulate dynamically modulated optical devices such as  isolators, circulators, directional absorbers, and nonreciprocal amplifiers in the time-domain.
## Features
T-Dyno natively supports the following features:
*   point sources
*   Total-field scattered-field (TF/SF) sources and directional plane-wave souces with the following temporal profiles:
    *   continuous waves (cw)
    *   Gaussian pulses
    *   wave packets, i.e. Gaussian modulated cw waves
*   Convolutional perfectly matched layers (CPML)
*   Supported materials:
    *   dispersionless lossy/lossless dielectrics
    *   dispersive dielectrics (Lorentz model)
    *   metal (Drude model)
    *   dynamically modulated refractive index
    *   dynamically modulated gain and loss
*   Shapes:
    *   rectangle
    *   circular
    *   ring
    *   wedge
*   Monitors
    Point monitors: weighted sum of the wave amplitudes on a set of points. Can the energy spectral density, power spectral density, number flux spectrum and number flux rate spectrum.
    Poynting energy flux monitor: monitor the real-time energy flux through a box or any edges of the box, from inside to outside. Calculate the frequency-space integral Poynting flux spectrum.
*   User interface
    Simple user interface where you can start, pause, reset, save plot, record videos, and save monitor data.
## Install
    $ pip install tdyno
Or,
    $ git clone git://github.com/alexsong/tdyno
    $ pip install .
## Requirements
-   Python 2.7 or >= 3.6
-   Numpy >= 1.11.3
-   matplotlib >= 2.0.0
-   scipy >= 0.19.0
-   for recording videos, need to install `ffmpeg`.
## Usage
The `examples` in the `examples/` folder are the easiest places to get started with the package. 
*   `fdtd_2d.py`
    It's recommended that you go through `fdtd_2d.py` first, then move on to other examples. 
    `fdtd_2d.py` contains a detailed explanation of the basic functionalities of the package. It contains: point sources and a TF/SF source with different source temporal profiles, PML absorbing boundary condition, and different types of materials and geometries to build a structure.
    https://user-images.githubusercontent.com/55603472/130169577-fa837496-456e-4b95-bf7c-93633b9a2fc7.mp4
*   `ring_coupler.py`
    This is an example of a ring resonator coupled to input/output waveguides.
*   `waveguide_2d_dynamic_modulation.py` 
    This example contains a waveguide under dynamic modulations. The modulation can be in the refractive index or in the gain/loss.
    This example also contain several point monitors and a Poynting monitor to measure wave intensities and calculate the spectrum.
    https://user-images.githubusercontent.com/55603472/130178495-1d9e19fb-0cf3-4a73-9e2b-c7f018962742.mp4
## Citing
If you find T-Dyno useful for your research, we would apprecite you citing our [paper](https://doi.org/10.1103/PhysRevA.99.013824). For your convenience, you can use the following BibTex entry:
```
@article{song2019dynamic,
  title={Direction-dependent parity-time phase transition and nonreciprocal amplification with dynamic gain-loss modulation},
  author={Song, Alex Y. and Shi, Yu and Lin, Qian and Fan, Shanhui},
  journal={Physical Review A},
  volume={99},
  issue={1},
  pages={013824},
  numpages={7},
  year={2019},
  month={Jan},
  publisher={American Physical Society},
  doi={10.1103/PhysRevA.99.013824},
  url={https://link.aps.org/doi/10.1103/PhysRevA.99.013824}
}
```

%package help
Summary:	Development documents and examples for tdyno
Provides:	python3-tdyno-doc
%description help
**T-Dyno** is a 2D finite-difference time-domain (FDTD) package. 
Apart from conventional FDTD functionalities, TDyno is capable of applying dynamic modulations in both the real and the imaginary parts of the permittivity, i.e. having index modulations and gain/loss modulations.
It can thus simulate dynamically modulated optical devices such as  isolators, circulators, directional absorbers, and nonreciprocal amplifiers in the time-domain.
## Features
T-Dyno natively supports the following features:
*   point sources
*   Total-field scattered-field (TF/SF) sources and directional plane-wave souces with the following temporal profiles:
    *   continuous waves (cw)
    *   Gaussian pulses
    *   wave packets, i.e. Gaussian modulated cw waves
*   Convolutional perfectly matched layers (CPML)
*   Supported materials:
    *   dispersionless lossy/lossless dielectrics
    *   dispersive dielectrics (Lorentz model)
    *   metal (Drude model)
    *   dynamically modulated refractive index
    *   dynamically modulated gain and loss
*   Shapes:
    *   rectangle
    *   circular
    *   ring
    *   wedge
*   Monitors
    Point monitors: weighted sum of the wave amplitudes on a set of points. Can the energy spectral density, power spectral density, number flux spectrum and number flux rate spectrum.
    Poynting energy flux monitor: monitor the real-time energy flux through a box or any edges of the box, from inside to outside. Calculate the frequency-space integral Poynting flux spectrum.
*   User interface
    Simple user interface where you can start, pause, reset, save plot, record videos, and save monitor data.
## Install
    $ pip install tdyno
Or,
    $ git clone git://github.com/alexsong/tdyno
    $ pip install .
## Requirements
-   Python 2.7 or >= 3.6
-   Numpy >= 1.11.3
-   matplotlib >= 2.0.0
-   scipy >= 0.19.0
-   for recording videos, need to install `ffmpeg`.
## Usage
The `examples` in the `examples/` folder are the easiest places to get started with the package. 
*   `fdtd_2d.py`
    It's recommended that you go through `fdtd_2d.py` first, then move on to other examples. 
    `fdtd_2d.py` contains a detailed explanation of the basic functionalities of the package. It contains: point sources and a TF/SF source with different source temporal profiles, PML absorbing boundary condition, and different types of materials and geometries to build a structure.
    https://user-images.githubusercontent.com/55603472/130169577-fa837496-456e-4b95-bf7c-93633b9a2fc7.mp4
*   `ring_coupler.py`
    This is an example of a ring resonator coupled to input/output waveguides.
*   `waveguide_2d_dynamic_modulation.py` 
    This example contains a waveguide under dynamic modulations. The modulation can be in the refractive index or in the gain/loss.
    This example also contain several point monitors and a Poynting monitor to measure wave intensities and calculate the spectrum.
    https://user-images.githubusercontent.com/55603472/130178495-1d9e19fb-0cf3-4a73-9e2b-c7f018962742.mp4
## Citing
If you find T-Dyno useful for your research, we would apprecite you citing our [paper](https://doi.org/10.1103/PhysRevA.99.013824). For your convenience, you can use the following BibTex entry:
```
@article{song2019dynamic,
  title={Direction-dependent parity-time phase transition and nonreciprocal amplification with dynamic gain-loss modulation},
  author={Song, Alex Y. and Shi, Yu and Lin, Qian and Fan, Shanhui},
  journal={Physical Review A},
  volume={99},
  issue={1},
  pages={013824},
  numpages={7},
  year={2019},
  month={Jan},
  publisher={American Physical Society},
  doi={10.1103/PhysRevA.99.013824},
  url={https://link.aps.org/doi/10.1103/PhysRevA.99.013824}
}
```

%prep
%autosetup -n tdyno-0.1.7

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-tdyno -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.7-1
- Package Spec generated