1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
|
%global _empty_manifest_terminate_build 0
Name: python-texthero
Version: 1.1.0
Release: 1
Summary: Text preprocessing, representation and visualization from zero to hero.
License: MIT
URL: https://github.com/jbesomi/texthero
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/00/6b/90e53fc4daf79ae1b8ce11c43d57ac70ea8334794e1510ccd92c813fa5fc/texthero-1.1.0.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scikit-learn
Requires: python3-spacy
Requires: python3-tqdm
Requires: python3-nltk
Requires: python3-plotly
Requires: python3-pandas
Requires: python3-wordcloud
Requires: python3-unidecode
Requires: python3-gensim
Requires: python3-matplotlib
Requires: python3-black
Requires: python3-pytest
Requires: python3-Sphinx
Requires: python3-sphinx-markdown-builder
Requires: python3-recommonmark
Requires: python3-nbsphinx
%description
<p align="center">
<a href="https://github.com/jbesomi/texthero/stargazers">
<img src="https://img.shields.io/github/stars/jbesomi/texthero.svg?colorA=orange&colorB=orange&logo=github"
alt="Github stars">
</a>
<a href="https://pypi.org/search/?q=texthero">
<img src="https://img.shields.io/pypi/v/texthero.svg?colorB=brightgreen"
alt="pip package">
</a>
<a href="https://pypi.org/project/texthero/">
<img alt="pip downloads" src="https://img.shields.io/pypi/dm/texthero">
</a>
<a href="https://github.com/jbesomi/texthero/issues">
<img src="https://img.shields.io/github/issues/jbesomi/texthero.svg"
alt="Github issues">
</a>
<a href="https://github.com/jbesomi/texthero/blob/master/LICENSE">
<img src="https://img.shields.io/github/license/jbesomi/texthero.svg"
alt="Github license">
</a>
</p>
<p align="center">
<img src="https://github.com/jbesomi/texthero/raw/master/github/logo.png">
</p>
<p style="font-size: 20px;" align="center">Text preprocessing, representation and visualization from zero to hero.</p>
<p align="center">
<a href="#from-zero-to-hero">From zero to hero</a> •
<a href="#installation">Installation</a> •
<a href="#getting-started">Getting Started</a> •
<a href="#examples">Examples</a> •
<a href="#api">API</a> •
<a href="#faq">FAQ</a> •
<a href="#contributions">Contributions</a>
</p>
<p align="center">
<img src="https://github.com/jbesomi/texthero/raw/master/github/screencast.gif">
</p>
<h2 align="center">From zero to hero</h2>
Texthero is a python toolkit to work with text-based dataset quickly and effortlessly. Texthero is very simple to learn and designed to be used on top of Pandas. Texthero has the same expressiveness and power of Pandas and is extensively documented. Texthero is modern and conceived for programmers of the 2020 decade with little knowledge if any in linguistic.
You can think of Texthero as a tool to help you _understand_ and work with text-based dataset. Given a tabular dataset, it's easy to _grasp the main concept_. Instead, given a text dataset, it's harder to have quick insights into the underline data. With Texthero, preprocessing text data, map it into vectors and visualize the obtained vector space takes just a couple of lines.
Texthero include tools for:
* Preprocess text data: it offers both out-of-the-box solutions but it's also flexible for custom-solutions.
* Natural Language Processing: keyphrases and keywords extraction, and named entity recognition.
* Text representation: TF-IDF, term frequency, and custom word-embeddings (wip)
* Vector space analysis: clustering (K-means, Meanshift, DBSAN and Hierarchical), topic modelling (wip) and interpretation.
* Text visualization: vector space visualization, place localization on maps (wip).
Texthero is free, open source and [well documented](https://texthero.org/docs) (and that's what we love most by the way!).
We hope you will find pleasure working with Texthero as we had during his development.
<h2 align="center">Hablas español?</h2>
Texthero has been developed for the whole NLP community. We know of hard is to deal with different NLP tools (NLTK, SpaCy, Gensim, TextBlob, Sklearn): that's why we developed Texthero, to simplify things.
Now, the next main milestone is to provide *multilingual support* and for this big step, we need the help of all of you. ¿Hablas español? Sie sprechen Deutsch? 你会说中文? 日本語が話せるのか? Fala português? Parli Italiano? Вы говорите по-русски? If yes or you speak another language not mentioned, then you might help us develop multilingual support! Even if you haven't contributed before or you just started with NLP contact us or open a Github issue, there is always a first time :) We promise you will learn a lot, and, ... who knows? It might help you find your new job as an NLP-developer!
For improving the python toolkit and provide an even better experience, your aid and feedback are crucial. If you have any problem or suggestion please open a Github [issue](https://github.com/jbesomi/texthero/issues), we will be glad to support you and help you.
<h2 align="center">Installation</h2>
Install texthero via `pip`:
```bash
pip install texthero
```
> ☝️Under the hoods, Texthero makes use of multiple NLP and machine learning toolkits such as Gensim, NLTK, SpaCy and scikit-learn. You don't need to install them all separately, pip will take care of that.
> For fast performance, make sure you have installed Spacy version >= 2.2. Also, make sure you have a recent version of python, the higher, the best.
<h2 align="center">Getting started</h2>
The best way to learn Texthero is through the <a href="https://texthero.org/docs/getting-started">Getting Started</a> docs.
In case you are an advanced python user, then `help(texthero)` should do the work.
<h2 align="center">Examples</h2>
<h3>1. Text cleaning, TF-IDF representation and visualization</h3>
```python
import texthero as hero
import pandas as pd
df = pd.read_csv(
"https://github.com/jbesomi/texthero/raw/master/dataset/bbcsport.csv"
)
df['pca'] = (
df['text']
.pipe(hero.clean)
.pipe(hero.tfidf)
.pipe(hero.pca)
)
hero.scatterplot(df, 'pca', color='topic', title="PCA BBC Sport news")
```
<p align="center">
<img src="https://github.com/jbesomi/texthero/raw/master/github/scatterplot_bbcsport.svg">
</p>
<h3>2. Text preprocessing, TF-IDF, K-means and visualization</h3>
```python
import texthero as hero
import pandas as pd
df = pd.read_csv(
"https://github.com/jbesomi/texthero/raw/master/dataset/bbcsport.csv"
)
df['tfidf'] = (
df['text']
.pipe(hero.clean)
.pipe(hero.tfidf)
)
df['kmeans_labels'] = (
df['tfidf']
.pipe(hero.kmeans, n_clusters=5)
.astype(str)
)
df['pca'] = df['tfidf'].pipe(hero.pca)
hero.scatterplot(df, 'pca', color='kmeans_labels', title="K-means BBC Sport news")
```
<p align="center">
<img src="https://github.com/jbesomi/texthero/raw/master/github/scatterplot_bbcsport_kmeans.svg">
</p>
<h3>3. Simple pipeline for text cleaning</h3>
```python
>>> import texthero as hero
>>> import pandas as pd
>>> text = "This sèntencé (123 /) needs to [OK!] be cleaned! "
>>> s = pd.Series(text)
>>> s
0 This sèntencé (123 /) needs to [OK!] be cleane...
dtype: object
```
Remove all digits:
```python
>>> s = hero.remove_digits(s)
>>> s
0 This sèntencé ( /) needs to [OK!] be cleaned!
dtype: object
```
> Remove digits replace only blocks of digits. The digits in the string "hello123" will not be removed. If we want to remove all digits, you need to set only_blocks to false.
Remove all type of brackets and their content.
```python
>>> s = hero.remove_brackets(s)
>>> s
0 This sèntencé needs to be cleaned!
dtype: object
```
Remove diacritics.
```python
>>> s = hero.remove_diacritics(s)
>>> s
0 This sentence needs to be cleaned!
dtype: object
```
Remove punctuation.
```python
>>> s = hero.remove_punctuation(s)
>>> s
0 This sentence needs to be cleaned
dtype: object
```
Remove extra white-spaces.
```python
>>> s = hero.remove_whitespace(s)
>>> s
0 This sentence needs to be cleaned
dtype: object
```
Sometimes we also wants to get rid of stop-words.
```python
>>> s = hero.remove_stopwords(s)
>>> s
0 This sentence needs cleaned
dtype: object
```
<h2 align="center">API</h2>
Texthero is composed of four modules: [preprocessing.py](/texthero/preprocessing.py), [nlp.py](/texthero/nlp.py), [representation.py](/texthero/representation.py) and [visualization.py](/texthero/visualization.py).
<h3>1. Preprocessing</h3>
**Scope:** prepare **text** data for further analysis.
Full documentation: [preprocessing](https://texthero.org/docs/api-preprocessing)
<h3>2. NLP</h3>
**Scope:** provide classic natural language processing tools such as `named_entity` and `noun_phrases`.
Full documentation: [nlp](https://texthero.org/docs/api-nlp)
<h3>2. Representation</h3>
**Scope:** map text data into vectors and do dimensionality reduction.
Supported **representation** algorithms:
1. Term frequency (`count`)
1. Term frequency-inverse document frequency (`tfidf`)
Supported **clustering** algorithms:
1. K-means (`kmeans`)
1. Density-Based Spatial Clustering of Applications with Noise (`dbscan`)
1. Meanshift (`meanshift`)
Supported **dimensionality reduction** algorithms:
1. Principal component analysis (`pca`)
1. t-distributed stochastic neighbor embedding (`tsne`)
1. Non-negative matrix factorization (`nmf`)
Full documentation: [representation](https://texthero.org/docs/api-representation)
<h3>3. Visualization</h3>
**Scope:** summarize the main facts regarding the text data and visualize it. This module is opinionable. It's handy for anyone that needs a quick solution to visualize on screen the text data, for instance during a text exploratory data analysis (EDA).
Supported functions:
- Text scatterplot (`scatterplot`)
- Most common words (`top_words`)
Full documentation: [visualization](https://texthero.org/docs/api-visualization)
<h2 align="center">FAQ</h2>
<h5>Why Texthero</h5>
Sometimes we just want things done, right? Texthero help with that. It helps makes things easier and give to the developer more time to focus on his custom requirements. We believe that start cleaning text should just take a minute. Same for finding the most important part of a text and same for representing it.
In a very pragmatic way, texthero has just one goal: make the developer spare time. Working with text data can be a pain and in most cases, a default pipeline can be quite good to start. There is always the time to come back and improve the preprocessing pipeline.
<h2 align="center">Contributions</h2>
Pull requests are amazing and most welcome. Start by fork this repository and [open an issue](https://github.com/jbesomi/texthero/issues).
Texthero is also looking for maintainers and contributors. In case of interest, just drop a line at jonathanbesomi__AT__gmail.com
<h3>Contributors (in chronological order)</h3>
- [Selim Al Awwa](https://github.com/selimelawwa/)
- [Parth Gandhi](https://github.com/ParthGandhi)
- [Dan Keefe](https://github.com/Peritract)
%package -n python3-texthero
Summary: Text preprocessing, representation and visualization from zero to hero.
Provides: python-texthero
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-texthero
<p align="center">
<a href="https://github.com/jbesomi/texthero/stargazers">
<img src="https://img.shields.io/github/stars/jbesomi/texthero.svg?colorA=orange&colorB=orange&logo=github"
alt="Github stars">
</a>
<a href="https://pypi.org/search/?q=texthero">
<img src="https://img.shields.io/pypi/v/texthero.svg?colorB=brightgreen"
alt="pip package">
</a>
<a href="https://pypi.org/project/texthero/">
<img alt="pip downloads" src="https://img.shields.io/pypi/dm/texthero">
</a>
<a href="https://github.com/jbesomi/texthero/issues">
<img src="https://img.shields.io/github/issues/jbesomi/texthero.svg"
alt="Github issues">
</a>
<a href="https://github.com/jbesomi/texthero/blob/master/LICENSE">
<img src="https://img.shields.io/github/license/jbesomi/texthero.svg"
alt="Github license">
</a>
</p>
<p align="center">
<img src="https://github.com/jbesomi/texthero/raw/master/github/logo.png">
</p>
<p style="font-size: 20px;" align="center">Text preprocessing, representation and visualization from zero to hero.</p>
<p align="center">
<a href="#from-zero-to-hero">From zero to hero</a> •
<a href="#installation">Installation</a> •
<a href="#getting-started">Getting Started</a> •
<a href="#examples">Examples</a> •
<a href="#api">API</a> •
<a href="#faq">FAQ</a> •
<a href="#contributions">Contributions</a>
</p>
<p align="center">
<img src="https://github.com/jbesomi/texthero/raw/master/github/screencast.gif">
</p>
<h2 align="center">From zero to hero</h2>
Texthero is a python toolkit to work with text-based dataset quickly and effortlessly. Texthero is very simple to learn and designed to be used on top of Pandas. Texthero has the same expressiveness and power of Pandas and is extensively documented. Texthero is modern and conceived for programmers of the 2020 decade with little knowledge if any in linguistic.
You can think of Texthero as a tool to help you _understand_ and work with text-based dataset. Given a tabular dataset, it's easy to _grasp the main concept_. Instead, given a text dataset, it's harder to have quick insights into the underline data. With Texthero, preprocessing text data, map it into vectors and visualize the obtained vector space takes just a couple of lines.
Texthero include tools for:
* Preprocess text data: it offers both out-of-the-box solutions but it's also flexible for custom-solutions.
* Natural Language Processing: keyphrases and keywords extraction, and named entity recognition.
* Text representation: TF-IDF, term frequency, and custom word-embeddings (wip)
* Vector space analysis: clustering (K-means, Meanshift, DBSAN and Hierarchical), topic modelling (wip) and interpretation.
* Text visualization: vector space visualization, place localization on maps (wip).
Texthero is free, open source and [well documented](https://texthero.org/docs) (and that's what we love most by the way!).
We hope you will find pleasure working with Texthero as we had during his development.
<h2 align="center">Hablas español?</h2>
Texthero has been developed for the whole NLP community. We know of hard is to deal with different NLP tools (NLTK, SpaCy, Gensim, TextBlob, Sklearn): that's why we developed Texthero, to simplify things.
Now, the next main milestone is to provide *multilingual support* and for this big step, we need the help of all of you. ¿Hablas español? Sie sprechen Deutsch? 你会说中文? 日本語が話せるのか? Fala português? Parli Italiano? Вы говорите по-русски? If yes or you speak another language not mentioned, then you might help us develop multilingual support! Even if you haven't contributed before or you just started with NLP contact us or open a Github issue, there is always a first time :) We promise you will learn a lot, and, ... who knows? It might help you find your new job as an NLP-developer!
For improving the python toolkit and provide an even better experience, your aid and feedback are crucial. If you have any problem or suggestion please open a Github [issue](https://github.com/jbesomi/texthero/issues), we will be glad to support you and help you.
<h2 align="center">Installation</h2>
Install texthero via `pip`:
```bash
pip install texthero
```
> ☝️Under the hoods, Texthero makes use of multiple NLP and machine learning toolkits such as Gensim, NLTK, SpaCy and scikit-learn. You don't need to install them all separately, pip will take care of that.
> For fast performance, make sure you have installed Spacy version >= 2.2. Also, make sure you have a recent version of python, the higher, the best.
<h2 align="center">Getting started</h2>
The best way to learn Texthero is through the <a href="https://texthero.org/docs/getting-started">Getting Started</a> docs.
In case you are an advanced python user, then `help(texthero)` should do the work.
<h2 align="center">Examples</h2>
<h3>1. Text cleaning, TF-IDF representation and visualization</h3>
```python
import texthero as hero
import pandas as pd
df = pd.read_csv(
"https://github.com/jbesomi/texthero/raw/master/dataset/bbcsport.csv"
)
df['pca'] = (
df['text']
.pipe(hero.clean)
.pipe(hero.tfidf)
.pipe(hero.pca)
)
hero.scatterplot(df, 'pca', color='topic', title="PCA BBC Sport news")
```
<p align="center">
<img src="https://github.com/jbesomi/texthero/raw/master/github/scatterplot_bbcsport.svg">
</p>
<h3>2. Text preprocessing, TF-IDF, K-means and visualization</h3>
```python
import texthero as hero
import pandas as pd
df = pd.read_csv(
"https://github.com/jbesomi/texthero/raw/master/dataset/bbcsport.csv"
)
df['tfidf'] = (
df['text']
.pipe(hero.clean)
.pipe(hero.tfidf)
)
df['kmeans_labels'] = (
df['tfidf']
.pipe(hero.kmeans, n_clusters=5)
.astype(str)
)
df['pca'] = df['tfidf'].pipe(hero.pca)
hero.scatterplot(df, 'pca', color='kmeans_labels', title="K-means BBC Sport news")
```
<p align="center">
<img src="https://github.com/jbesomi/texthero/raw/master/github/scatterplot_bbcsport_kmeans.svg">
</p>
<h3>3. Simple pipeline for text cleaning</h3>
```python
>>> import texthero as hero
>>> import pandas as pd
>>> text = "This sèntencé (123 /) needs to [OK!] be cleaned! "
>>> s = pd.Series(text)
>>> s
0 This sèntencé (123 /) needs to [OK!] be cleane...
dtype: object
```
Remove all digits:
```python
>>> s = hero.remove_digits(s)
>>> s
0 This sèntencé ( /) needs to [OK!] be cleaned!
dtype: object
```
> Remove digits replace only blocks of digits. The digits in the string "hello123" will not be removed. If we want to remove all digits, you need to set only_blocks to false.
Remove all type of brackets and their content.
```python
>>> s = hero.remove_brackets(s)
>>> s
0 This sèntencé needs to be cleaned!
dtype: object
```
Remove diacritics.
```python
>>> s = hero.remove_diacritics(s)
>>> s
0 This sentence needs to be cleaned!
dtype: object
```
Remove punctuation.
```python
>>> s = hero.remove_punctuation(s)
>>> s
0 This sentence needs to be cleaned
dtype: object
```
Remove extra white-spaces.
```python
>>> s = hero.remove_whitespace(s)
>>> s
0 This sentence needs to be cleaned
dtype: object
```
Sometimes we also wants to get rid of stop-words.
```python
>>> s = hero.remove_stopwords(s)
>>> s
0 This sentence needs cleaned
dtype: object
```
<h2 align="center">API</h2>
Texthero is composed of four modules: [preprocessing.py](/texthero/preprocessing.py), [nlp.py](/texthero/nlp.py), [representation.py](/texthero/representation.py) and [visualization.py](/texthero/visualization.py).
<h3>1. Preprocessing</h3>
**Scope:** prepare **text** data for further analysis.
Full documentation: [preprocessing](https://texthero.org/docs/api-preprocessing)
<h3>2. NLP</h3>
**Scope:** provide classic natural language processing tools such as `named_entity` and `noun_phrases`.
Full documentation: [nlp](https://texthero.org/docs/api-nlp)
<h3>2. Representation</h3>
**Scope:** map text data into vectors and do dimensionality reduction.
Supported **representation** algorithms:
1. Term frequency (`count`)
1. Term frequency-inverse document frequency (`tfidf`)
Supported **clustering** algorithms:
1. K-means (`kmeans`)
1. Density-Based Spatial Clustering of Applications with Noise (`dbscan`)
1. Meanshift (`meanshift`)
Supported **dimensionality reduction** algorithms:
1. Principal component analysis (`pca`)
1. t-distributed stochastic neighbor embedding (`tsne`)
1. Non-negative matrix factorization (`nmf`)
Full documentation: [representation](https://texthero.org/docs/api-representation)
<h3>3. Visualization</h3>
**Scope:** summarize the main facts regarding the text data and visualize it. This module is opinionable. It's handy for anyone that needs a quick solution to visualize on screen the text data, for instance during a text exploratory data analysis (EDA).
Supported functions:
- Text scatterplot (`scatterplot`)
- Most common words (`top_words`)
Full documentation: [visualization](https://texthero.org/docs/api-visualization)
<h2 align="center">FAQ</h2>
<h5>Why Texthero</h5>
Sometimes we just want things done, right? Texthero help with that. It helps makes things easier and give to the developer more time to focus on his custom requirements. We believe that start cleaning text should just take a minute. Same for finding the most important part of a text and same for representing it.
In a very pragmatic way, texthero has just one goal: make the developer spare time. Working with text data can be a pain and in most cases, a default pipeline can be quite good to start. There is always the time to come back and improve the preprocessing pipeline.
<h2 align="center">Contributions</h2>
Pull requests are amazing and most welcome. Start by fork this repository and [open an issue](https://github.com/jbesomi/texthero/issues).
Texthero is also looking for maintainers and contributors. In case of interest, just drop a line at jonathanbesomi__AT__gmail.com
<h3>Contributors (in chronological order)</h3>
- [Selim Al Awwa](https://github.com/selimelawwa/)
- [Parth Gandhi](https://github.com/ParthGandhi)
- [Dan Keefe](https://github.com/Peritract)
%package help
Summary: Development documents and examples for texthero
Provides: python3-texthero-doc
%description help
<p align="center">
<a href="https://github.com/jbesomi/texthero/stargazers">
<img src="https://img.shields.io/github/stars/jbesomi/texthero.svg?colorA=orange&colorB=orange&logo=github"
alt="Github stars">
</a>
<a href="https://pypi.org/search/?q=texthero">
<img src="https://img.shields.io/pypi/v/texthero.svg?colorB=brightgreen"
alt="pip package">
</a>
<a href="https://pypi.org/project/texthero/">
<img alt="pip downloads" src="https://img.shields.io/pypi/dm/texthero">
</a>
<a href="https://github.com/jbesomi/texthero/issues">
<img src="https://img.shields.io/github/issues/jbesomi/texthero.svg"
alt="Github issues">
</a>
<a href="https://github.com/jbesomi/texthero/blob/master/LICENSE">
<img src="https://img.shields.io/github/license/jbesomi/texthero.svg"
alt="Github license">
</a>
</p>
<p align="center">
<img src="https://github.com/jbesomi/texthero/raw/master/github/logo.png">
</p>
<p style="font-size: 20px;" align="center">Text preprocessing, representation and visualization from zero to hero.</p>
<p align="center">
<a href="#from-zero-to-hero">From zero to hero</a> •
<a href="#installation">Installation</a> •
<a href="#getting-started">Getting Started</a> •
<a href="#examples">Examples</a> •
<a href="#api">API</a> •
<a href="#faq">FAQ</a> •
<a href="#contributions">Contributions</a>
</p>
<p align="center">
<img src="https://github.com/jbesomi/texthero/raw/master/github/screencast.gif">
</p>
<h2 align="center">From zero to hero</h2>
Texthero is a python toolkit to work with text-based dataset quickly and effortlessly. Texthero is very simple to learn and designed to be used on top of Pandas. Texthero has the same expressiveness and power of Pandas and is extensively documented. Texthero is modern and conceived for programmers of the 2020 decade with little knowledge if any in linguistic.
You can think of Texthero as a tool to help you _understand_ and work with text-based dataset. Given a tabular dataset, it's easy to _grasp the main concept_. Instead, given a text dataset, it's harder to have quick insights into the underline data. With Texthero, preprocessing text data, map it into vectors and visualize the obtained vector space takes just a couple of lines.
Texthero include tools for:
* Preprocess text data: it offers both out-of-the-box solutions but it's also flexible for custom-solutions.
* Natural Language Processing: keyphrases and keywords extraction, and named entity recognition.
* Text representation: TF-IDF, term frequency, and custom word-embeddings (wip)
* Vector space analysis: clustering (K-means, Meanshift, DBSAN and Hierarchical), topic modelling (wip) and interpretation.
* Text visualization: vector space visualization, place localization on maps (wip).
Texthero is free, open source and [well documented](https://texthero.org/docs) (and that's what we love most by the way!).
We hope you will find pleasure working with Texthero as we had during his development.
<h2 align="center">Hablas español?</h2>
Texthero has been developed for the whole NLP community. We know of hard is to deal with different NLP tools (NLTK, SpaCy, Gensim, TextBlob, Sklearn): that's why we developed Texthero, to simplify things.
Now, the next main milestone is to provide *multilingual support* and for this big step, we need the help of all of you. ¿Hablas español? Sie sprechen Deutsch? 你会说中文? 日本語が話せるのか? Fala português? Parli Italiano? Вы говорите по-русски? If yes or you speak another language not mentioned, then you might help us develop multilingual support! Even if you haven't contributed before or you just started with NLP contact us or open a Github issue, there is always a first time :) We promise you will learn a lot, and, ... who knows? It might help you find your new job as an NLP-developer!
For improving the python toolkit and provide an even better experience, your aid and feedback are crucial. If you have any problem or suggestion please open a Github [issue](https://github.com/jbesomi/texthero/issues), we will be glad to support you and help you.
<h2 align="center">Installation</h2>
Install texthero via `pip`:
```bash
pip install texthero
```
> ☝️Under the hoods, Texthero makes use of multiple NLP and machine learning toolkits such as Gensim, NLTK, SpaCy and scikit-learn. You don't need to install them all separately, pip will take care of that.
> For fast performance, make sure you have installed Spacy version >= 2.2. Also, make sure you have a recent version of python, the higher, the best.
<h2 align="center">Getting started</h2>
The best way to learn Texthero is through the <a href="https://texthero.org/docs/getting-started">Getting Started</a> docs.
In case you are an advanced python user, then `help(texthero)` should do the work.
<h2 align="center">Examples</h2>
<h3>1. Text cleaning, TF-IDF representation and visualization</h3>
```python
import texthero as hero
import pandas as pd
df = pd.read_csv(
"https://github.com/jbesomi/texthero/raw/master/dataset/bbcsport.csv"
)
df['pca'] = (
df['text']
.pipe(hero.clean)
.pipe(hero.tfidf)
.pipe(hero.pca)
)
hero.scatterplot(df, 'pca', color='topic', title="PCA BBC Sport news")
```
<p align="center">
<img src="https://github.com/jbesomi/texthero/raw/master/github/scatterplot_bbcsport.svg">
</p>
<h3>2. Text preprocessing, TF-IDF, K-means and visualization</h3>
```python
import texthero as hero
import pandas as pd
df = pd.read_csv(
"https://github.com/jbesomi/texthero/raw/master/dataset/bbcsport.csv"
)
df['tfidf'] = (
df['text']
.pipe(hero.clean)
.pipe(hero.tfidf)
)
df['kmeans_labels'] = (
df['tfidf']
.pipe(hero.kmeans, n_clusters=5)
.astype(str)
)
df['pca'] = df['tfidf'].pipe(hero.pca)
hero.scatterplot(df, 'pca', color='kmeans_labels', title="K-means BBC Sport news")
```
<p align="center">
<img src="https://github.com/jbesomi/texthero/raw/master/github/scatterplot_bbcsport_kmeans.svg">
</p>
<h3>3. Simple pipeline for text cleaning</h3>
```python
>>> import texthero as hero
>>> import pandas as pd
>>> text = "This sèntencé (123 /) needs to [OK!] be cleaned! "
>>> s = pd.Series(text)
>>> s
0 This sèntencé (123 /) needs to [OK!] be cleane...
dtype: object
```
Remove all digits:
```python
>>> s = hero.remove_digits(s)
>>> s
0 This sèntencé ( /) needs to [OK!] be cleaned!
dtype: object
```
> Remove digits replace only blocks of digits. The digits in the string "hello123" will not be removed. If we want to remove all digits, you need to set only_blocks to false.
Remove all type of brackets and their content.
```python
>>> s = hero.remove_brackets(s)
>>> s
0 This sèntencé needs to be cleaned!
dtype: object
```
Remove diacritics.
```python
>>> s = hero.remove_diacritics(s)
>>> s
0 This sentence needs to be cleaned!
dtype: object
```
Remove punctuation.
```python
>>> s = hero.remove_punctuation(s)
>>> s
0 This sentence needs to be cleaned
dtype: object
```
Remove extra white-spaces.
```python
>>> s = hero.remove_whitespace(s)
>>> s
0 This sentence needs to be cleaned
dtype: object
```
Sometimes we also wants to get rid of stop-words.
```python
>>> s = hero.remove_stopwords(s)
>>> s
0 This sentence needs cleaned
dtype: object
```
<h2 align="center">API</h2>
Texthero is composed of four modules: [preprocessing.py](/texthero/preprocessing.py), [nlp.py](/texthero/nlp.py), [representation.py](/texthero/representation.py) and [visualization.py](/texthero/visualization.py).
<h3>1. Preprocessing</h3>
**Scope:** prepare **text** data for further analysis.
Full documentation: [preprocessing](https://texthero.org/docs/api-preprocessing)
<h3>2. NLP</h3>
**Scope:** provide classic natural language processing tools such as `named_entity` and `noun_phrases`.
Full documentation: [nlp](https://texthero.org/docs/api-nlp)
<h3>2. Representation</h3>
**Scope:** map text data into vectors and do dimensionality reduction.
Supported **representation** algorithms:
1. Term frequency (`count`)
1. Term frequency-inverse document frequency (`tfidf`)
Supported **clustering** algorithms:
1. K-means (`kmeans`)
1. Density-Based Spatial Clustering of Applications with Noise (`dbscan`)
1. Meanshift (`meanshift`)
Supported **dimensionality reduction** algorithms:
1. Principal component analysis (`pca`)
1. t-distributed stochastic neighbor embedding (`tsne`)
1. Non-negative matrix factorization (`nmf`)
Full documentation: [representation](https://texthero.org/docs/api-representation)
<h3>3. Visualization</h3>
**Scope:** summarize the main facts regarding the text data and visualize it. This module is opinionable. It's handy for anyone that needs a quick solution to visualize on screen the text data, for instance during a text exploratory data analysis (EDA).
Supported functions:
- Text scatterplot (`scatterplot`)
- Most common words (`top_words`)
Full documentation: [visualization](https://texthero.org/docs/api-visualization)
<h2 align="center">FAQ</h2>
<h5>Why Texthero</h5>
Sometimes we just want things done, right? Texthero help with that. It helps makes things easier and give to the developer more time to focus on his custom requirements. We believe that start cleaning text should just take a minute. Same for finding the most important part of a text and same for representing it.
In a very pragmatic way, texthero has just one goal: make the developer spare time. Working with text data can be a pain and in most cases, a default pipeline can be quite good to start. There is always the time to come back and improve the preprocessing pipeline.
<h2 align="center">Contributions</h2>
Pull requests are amazing and most welcome. Start by fork this repository and [open an issue](https://github.com/jbesomi/texthero/issues).
Texthero is also looking for maintainers and contributors. In case of interest, just drop a line at jonathanbesomi__AT__gmail.com
<h3>Contributors (in chronological order)</h3>
- [Selim Al Awwa](https://github.com/selimelawwa/)
- [Parth Gandhi](https://github.com/ParthGandhi)
- [Dan Keefe](https://github.com/Peritract)
%prep
%autosetup -n texthero-1.1.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-texthero -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 25 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.0-1
- Package Spec generated
|