summaryrefslogtreecommitdiff
path: root/python-tokenizers.spec
blob: 8252f8d93d84985040e66ef0cdb309284c62554a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
%global _empty_manifest_terminate_build 0
Name:		python-tokenizers
Version:	0.13.3
Release:	1
Summary:	Fast and Customizable Tokenizers
License:	Apache License 2.0
URL:		https://github.com/huggingface/tokenizers
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/29/9c/936ebad6dd963616189d6362f4c2c03a0314cf2a221ba15e48dd714d29cf/tokenizers-0.13.3.tar.gz

Requires:	python3-pytest
Requires:	python3-requests
Requires:	python3-numpy
Requires:	python3-datasets
Requires:	python3-black
Requires:	python3-sphinx
Requires:	python3-sphinx-rtd-theme
Requires:	python3-setuptools-rust
Requires:	python3-pytest
Requires:	python3-requests
Requires:	python3-numpy
Requires:	python3-datasets
Requires:	python3-black

%description
<p align="center">
    <br>
    <img src="https://huggingface.co/landing/assets/tokenizers/tokenizers-logo.png" width="600"/>
    <br>
<p>
<p align="center">
    <a href="https://badge.fury.io/py/tokenizers">
         <img alt="Build" src="https://badge.fury.io/py/tokenizers.svg">
    </a>
    <a href="https://github.com/huggingface/tokenizers/blob/master/LICENSE">
        <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/tokenizers.svg?color=blue">
    </a>
</p>
<br>

# Tokenizers

Provides an implementation of today's most used tokenizers, with a focus on performance and
versatility.

Bindings over the [Rust](https://github.com/huggingface/tokenizers/tree/master/tokenizers) implementation.
If you are interested in the High-level design, you can go check it there.

Otherwise, let's dive in!

## Main features:

 - Train new vocabularies and tokenize using 4 pre-made tokenizers (Bert WordPiece and the 3
   most common BPE versions).
 - Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes
   less than 20 seconds to tokenize a GB of text on a server's CPU.
 - Easy to use, but also extremely versatile.
 - Designed for research and production.
 - Normalization comes with alignments tracking. It's always possible to get the part of the
   original sentence that corresponds to a given token.
 - Does all the pre-processing: Truncate, Pad, add the special tokens your model needs.

### Installation

#### With pip:

```bash
pip install tokenizers
```

#### From sources:

To use this method, you need to have the Rust installed:

```bash
# Install with:
curl https://sh.rustup.rs -sSf | sh -s -- -y
export PATH="$HOME/.cargo/bin:$PATH"
```

Once Rust is installed, you can compile doing the following

```bash
git clone https://github.com/huggingface/tokenizers
cd tokenizers/bindings/python

# Create a virtual env (you can use yours as well)
python -m venv .env
source .env/bin/activate

# Install `tokenizers` in the current virtual env
pip install setuptools_rust
python setup.py install
```

### Load a pretrained tokenizer from the Hub

```python
from tokenizers import Tokenizer

tokenizer = Tokenizer.from_pretrained("bert-base-cased")
```

### Using the provided Tokenizers

We provide some pre-build tokenizers to cover the most common cases. You can easily load one of
these using some `vocab.json` and `merges.txt` files:

```python
from tokenizers import CharBPETokenizer

# Initialize a tokenizer
vocab = "./path/to/vocab.json"
merges = "./path/to/merges.txt"
tokenizer = CharBPETokenizer(vocab, merges)

# And then encode:
encoded = tokenizer.encode("I can feel the magic, can you?")
print(encoded.ids)
print(encoded.tokens)
```

And you can train them just as simply:

```python
from tokenizers import CharBPETokenizer

# Initialize a tokenizer
tokenizer = CharBPETokenizer()

# Then train it!
tokenizer.train([ "./path/to/files/1.txt", "./path/to/files/2.txt" ])

# Now, let's use it:
encoded = tokenizer.encode("I can feel the magic, can you?")

# And finally save it somewhere
tokenizer.save("./path/to/directory/my-bpe.tokenizer.json")
```

#### Provided Tokenizers

 - `CharBPETokenizer`: The original BPE
 - `ByteLevelBPETokenizer`: The byte level version of the BPE
 - `SentencePieceBPETokenizer`: A BPE implementation compatible with the one used by SentencePiece
 - `BertWordPieceTokenizer`: The famous Bert tokenizer, using WordPiece

All of these can be used and trained as explained above!

### Build your own

Whenever these provided tokenizers don't give you enough freedom, you can build your own tokenizer,
by putting all the different parts you need together.
You can check how we implemented the [provided tokenizers](https://github.com/huggingface/tokenizers/tree/master/bindings/python/py_src/tokenizers/implementations) and adapt them easily to your own needs.

#### Building a byte-level BPE

Here is an example showing how to build your own byte-level BPE by putting all the different pieces
together, and then saving it to a single file:

```python
from tokenizers import Tokenizer, models, pre_tokenizers, decoders, trainers, processors

# Initialize a tokenizer
tokenizer = Tokenizer(models.BPE())

# Customize pre-tokenization and decoding
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=True)
tokenizer.decoder = decoders.ByteLevel()
tokenizer.post_processor = processors.ByteLevel(trim_offsets=True)

# And then train
trainer = trainers.BpeTrainer(
    vocab_size=20000,
    min_frequency=2,
    initial_alphabet=pre_tokenizers.ByteLevel.alphabet()
)
tokenizer.train([
    "./path/to/dataset/1.txt",
    "./path/to/dataset/2.txt",
    "./path/to/dataset/3.txt"
], trainer=trainer)

# And Save it
tokenizer.save("byte-level-bpe.tokenizer.json", pretty=True)
```

Now, when you want to use this tokenizer, this is as simple as:

```python
from tokenizers import Tokenizer

tokenizer = Tokenizer.from_file("byte-level-bpe.tokenizer.json")

encoded = tokenizer.encode("I can feel the magic, can you?")
```


%package -n python3-tokenizers
Summary:	Fast and Customizable Tokenizers
Provides:	python-tokenizers
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-tokenizers
<p align="center">
    <br>
    <img src="https://huggingface.co/landing/assets/tokenizers/tokenizers-logo.png" width="600"/>
    <br>
<p>
<p align="center">
    <a href="https://badge.fury.io/py/tokenizers">
         <img alt="Build" src="https://badge.fury.io/py/tokenizers.svg">
    </a>
    <a href="https://github.com/huggingface/tokenizers/blob/master/LICENSE">
        <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/tokenizers.svg?color=blue">
    </a>
</p>
<br>

# Tokenizers

Provides an implementation of today's most used tokenizers, with a focus on performance and
versatility.

Bindings over the [Rust](https://github.com/huggingface/tokenizers/tree/master/tokenizers) implementation.
If you are interested in the High-level design, you can go check it there.

Otherwise, let's dive in!

## Main features:

 - Train new vocabularies and tokenize using 4 pre-made tokenizers (Bert WordPiece and the 3
   most common BPE versions).
 - Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes
   less than 20 seconds to tokenize a GB of text on a server's CPU.
 - Easy to use, but also extremely versatile.
 - Designed for research and production.
 - Normalization comes with alignments tracking. It's always possible to get the part of the
   original sentence that corresponds to a given token.
 - Does all the pre-processing: Truncate, Pad, add the special tokens your model needs.

### Installation

#### With pip:

```bash
pip install tokenizers
```

#### From sources:

To use this method, you need to have the Rust installed:

```bash
# Install with:
curl https://sh.rustup.rs -sSf | sh -s -- -y
export PATH="$HOME/.cargo/bin:$PATH"
```

Once Rust is installed, you can compile doing the following

```bash
git clone https://github.com/huggingface/tokenizers
cd tokenizers/bindings/python

# Create a virtual env (you can use yours as well)
python -m venv .env
source .env/bin/activate

# Install `tokenizers` in the current virtual env
pip install setuptools_rust
python setup.py install
```

### Load a pretrained tokenizer from the Hub

```python
from tokenizers import Tokenizer

tokenizer = Tokenizer.from_pretrained("bert-base-cased")
```

### Using the provided Tokenizers

We provide some pre-build tokenizers to cover the most common cases. You can easily load one of
these using some `vocab.json` and `merges.txt` files:

```python
from tokenizers import CharBPETokenizer

# Initialize a tokenizer
vocab = "./path/to/vocab.json"
merges = "./path/to/merges.txt"
tokenizer = CharBPETokenizer(vocab, merges)

# And then encode:
encoded = tokenizer.encode("I can feel the magic, can you?")
print(encoded.ids)
print(encoded.tokens)
```

And you can train them just as simply:

```python
from tokenizers import CharBPETokenizer

# Initialize a tokenizer
tokenizer = CharBPETokenizer()

# Then train it!
tokenizer.train([ "./path/to/files/1.txt", "./path/to/files/2.txt" ])

# Now, let's use it:
encoded = tokenizer.encode("I can feel the magic, can you?")

# And finally save it somewhere
tokenizer.save("./path/to/directory/my-bpe.tokenizer.json")
```

#### Provided Tokenizers

 - `CharBPETokenizer`: The original BPE
 - `ByteLevelBPETokenizer`: The byte level version of the BPE
 - `SentencePieceBPETokenizer`: A BPE implementation compatible with the one used by SentencePiece
 - `BertWordPieceTokenizer`: The famous Bert tokenizer, using WordPiece

All of these can be used and trained as explained above!

### Build your own

Whenever these provided tokenizers don't give you enough freedom, you can build your own tokenizer,
by putting all the different parts you need together.
You can check how we implemented the [provided tokenizers](https://github.com/huggingface/tokenizers/tree/master/bindings/python/py_src/tokenizers/implementations) and adapt them easily to your own needs.

#### Building a byte-level BPE

Here is an example showing how to build your own byte-level BPE by putting all the different pieces
together, and then saving it to a single file:

```python
from tokenizers import Tokenizer, models, pre_tokenizers, decoders, trainers, processors

# Initialize a tokenizer
tokenizer = Tokenizer(models.BPE())

# Customize pre-tokenization and decoding
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=True)
tokenizer.decoder = decoders.ByteLevel()
tokenizer.post_processor = processors.ByteLevel(trim_offsets=True)

# And then train
trainer = trainers.BpeTrainer(
    vocab_size=20000,
    min_frequency=2,
    initial_alphabet=pre_tokenizers.ByteLevel.alphabet()
)
tokenizer.train([
    "./path/to/dataset/1.txt",
    "./path/to/dataset/2.txt",
    "./path/to/dataset/3.txt"
], trainer=trainer)

# And Save it
tokenizer.save("byte-level-bpe.tokenizer.json", pretty=True)
```

Now, when you want to use this tokenizer, this is as simple as:

```python
from tokenizers import Tokenizer

tokenizer = Tokenizer.from_file("byte-level-bpe.tokenizer.json")

encoded = tokenizer.encode("I can feel the magic, can you?")
```


%package help
Summary:	Development documents and examples for tokenizers
Provides:	python3-tokenizers-doc
%description help
<p align="center">
    <br>
    <img src="https://huggingface.co/landing/assets/tokenizers/tokenizers-logo.png" width="600"/>
    <br>
<p>
<p align="center">
    <a href="https://badge.fury.io/py/tokenizers">
         <img alt="Build" src="https://badge.fury.io/py/tokenizers.svg">
    </a>
    <a href="https://github.com/huggingface/tokenizers/blob/master/LICENSE">
        <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/tokenizers.svg?color=blue">
    </a>
</p>
<br>

# Tokenizers

Provides an implementation of today's most used tokenizers, with a focus on performance and
versatility.

Bindings over the [Rust](https://github.com/huggingface/tokenizers/tree/master/tokenizers) implementation.
If you are interested in the High-level design, you can go check it there.

Otherwise, let's dive in!

## Main features:

 - Train new vocabularies and tokenize using 4 pre-made tokenizers (Bert WordPiece and the 3
   most common BPE versions).
 - Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes
   less than 20 seconds to tokenize a GB of text on a server's CPU.
 - Easy to use, but also extremely versatile.
 - Designed for research and production.
 - Normalization comes with alignments tracking. It's always possible to get the part of the
   original sentence that corresponds to a given token.
 - Does all the pre-processing: Truncate, Pad, add the special tokens your model needs.

### Installation

#### With pip:

```bash
pip install tokenizers
```

#### From sources:

To use this method, you need to have the Rust installed:

```bash
# Install with:
curl https://sh.rustup.rs -sSf | sh -s -- -y
export PATH="$HOME/.cargo/bin:$PATH"
```

Once Rust is installed, you can compile doing the following

```bash
git clone https://github.com/huggingface/tokenizers
cd tokenizers/bindings/python

# Create a virtual env (you can use yours as well)
python -m venv .env
source .env/bin/activate

# Install `tokenizers` in the current virtual env
pip install setuptools_rust
python setup.py install
```

### Load a pretrained tokenizer from the Hub

```python
from tokenizers import Tokenizer

tokenizer = Tokenizer.from_pretrained("bert-base-cased")
```

### Using the provided Tokenizers

We provide some pre-build tokenizers to cover the most common cases. You can easily load one of
these using some `vocab.json` and `merges.txt` files:

```python
from tokenizers import CharBPETokenizer

# Initialize a tokenizer
vocab = "./path/to/vocab.json"
merges = "./path/to/merges.txt"
tokenizer = CharBPETokenizer(vocab, merges)

# And then encode:
encoded = tokenizer.encode("I can feel the magic, can you?")
print(encoded.ids)
print(encoded.tokens)
```

And you can train them just as simply:

```python
from tokenizers import CharBPETokenizer

# Initialize a tokenizer
tokenizer = CharBPETokenizer()

# Then train it!
tokenizer.train([ "./path/to/files/1.txt", "./path/to/files/2.txt" ])

# Now, let's use it:
encoded = tokenizer.encode("I can feel the magic, can you?")

# And finally save it somewhere
tokenizer.save("./path/to/directory/my-bpe.tokenizer.json")
```

#### Provided Tokenizers

 - `CharBPETokenizer`: The original BPE
 - `ByteLevelBPETokenizer`: The byte level version of the BPE
 - `SentencePieceBPETokenizer`: A BPE implementation compatible with the one used by SentencePiece
 - `BertWordPieceTokenizer`: The famous Bert tokenizer, using WordPiece

All of these can be used and trained as explained above!

### Build your own

Whenever these provided tokenizers don't give you enough freedom, you can build your own tokenizer,
by putting all the different parts you need together.
You can check how we implemented the [provided tokenizers](https://github.com/huggingface/tokenizers/tree/master/bindings/python/py_src/tokenizers/implementations) and adapt them easily to your own needs.

#### Building a byte-level BPE

Here is an example showing how to build your own byte-level BPE by putting all the different pieces
together, and then saving it to a single file:

```python
from tokenizers import Tokenizer, models, pre_tokenizers, decoders, trainers, processors

# Initialize a tokenizer
tokenizer = Tokenizer(models.BPE())

# Customize pre-tokenization and decoding
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=True)
tokenizer.decoder = decoders.ByteLevel()
tokenizer.post_processor = processors.ByteLevel(trim_offsets=True)

# And then train
trainer = trainers.BpeTrainer(
    vocab_size=20000,
    min_frequency=2,
    initial_alphabet=pre_tokenizers.ByteLevel.alphabet()
)
tokenizer.train([
    "./path/to/dataset/1.txt",
    "./path/to/dataset/2.txt",
    "./path/to/dataset/3.txt"
], trainer=trainer)

# And Save it
tokenizer.save("byte-level-bpe.tokenizer.json", pretty=True)
```

Now, when you want to use this tokenizer, this is as simple as:

```python
from tokenizers import Tokenizer

tokenizer = Tokenizer.from_file("byte-level-bpe.tokenizer.json")

encoded = tokenizer.encode("I can feel the magic, can you?")
```


%prep
%autosetup -n tokenizers-0.13.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-tokenizers -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 0.13.3-1
- Package Spec generated