1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
%global _empty_manifest_terminate_build 0
Name: python-torch-intermediate-layer-getter
Version: 0.1.post1
Release: 1
Summary: Simple easy to use module to get the intermediate results from chosen submodules
License: GNU General Public License v3 (GPLv3)
URL: https://github.com/sebamenabar/Pytorch-IntermediateLayerGetter
Source0: https://mirrors.aliyun.com/pypi/web/packages/38/98/8a37ff086257cdc9fd3e62f47b76de7d0091e9a43f3c719521411068449a/torch_intermediate_layer_getter-0.1.post1.tar.gz
BuildArch: noarch
%description
Simple easy to use module to get the intermediate results from chosen submodules. Supports submodule annidation. Inspired in [this](https://github.com/pytorch/vision/blob/f76e598d47879dbd917bf5936bbd11ff41632787/torchvision/models/_utils.py#L7) but does not assume that submodules are executed sequentially.
# Installation
```sh
pip install torch_intermediate_layer_getter
```
# Usage
## Example
```python
import torch
import torch.nn as nn
from torch_intermediate_layer_getter import IntermediateLayerGetter as MidGetter
class Model(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(2, 2)
self.fc2 = nn.Linear(2, 2)
self.nested = nn.Sequential(
nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 3)),
nn.Linear(3, 1),
)
self.interaction_idty = nn.Identity() # Simple trick for operations not performed as modules
def forward(self, x):
x1 = self.fc1(x)
x2 = self.fc2(x)
interaction = x1 * x2
self.interaction_idty(interaction)
x_out = self.nested(interaction)
return x_out
model = Model()
return_layers = {
'fc2': 'fc2',
'nested.0.1': 'nested',
'interaction_idty': 'interaction',
}
mid_getter = MidGetter(model, return_layers=return_layers, keep_output=True)
mid_outputs, model_output = mid_getter(torch.randn(1, 2))
print(model_output)
>> tensor([[0.3219]], grad_fn=<AddmmBackward>)
print(mid_outputs)
>> OrderedDict([('fc2', tensor([[-1.5125, 0.9334]], grad_fn=<AddmmBackward>)),
('interaction', tensor([[-0.0687, -0.1462]], grad_fn=<MulBackward0>)),
('nested', tensor([[-0.1697, 0.1432, 0.2959]], grad_fn=<AddmmBackward>))])
# model_output is None if keep_ouput is False
# if keep_output is True the model_output contains the final model's output
```
%package -n python3-torch-intermediate-layer-getter
Summary: Simple easy to use module to get the intermediate results from chosen submodules
Provides: python-torch-intermediate-layer-getter
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-torch-intermediate-layer-getter
Simple easy to use module to get the intermediate results from chosen submodules. Supports submodule annidation. Inspired in [this](https://github.com/pytorch/vision/blob/f76e598d47879dbd917bf5936bbd11ff41632787/torchvision/models/_utils.py#L7) but does not assume that submodules are executed sequentially.
# Installation
```sh
pip install torch_intermediate_layer_getter
```
# Usage
## Example
```python
import torch
import torch.nn as nn
from torch_intermediate_layer_getter import IntermediateLayerGetter as MidGetter
class Model(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(2, 2)
self.fc2 = nn.Linear(2, 2)
self.nested = nn.Sequential(
nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 3)),
nn.Linear(3, 1),
)
self.interaction_idty = nn.Identity() # Simple trick for operations not performed as modules
def forward(self, x):
x1 = self.fc1(x)
x2 = self.fc2(x)
interaction = x1 * x2
self.interaction_idty(interaction)
x_out = self.nested(interaction)
return x_out
model = Model()
return_layers = {
'fc2': 'fc2',
'nested.0.1': 'nested',
'interaction_idty': 'interaction',
}
mid_getter = MidGetter(model, return_layers=return_layers, keep_output=True)
mid_outputs, model_output = mid_getter(torch.randn(1, 2))
print(model_output)
>> tensor([[0.3219]], grad_fn=<AddmmBackward>)
print(mid_outputs)
>> OrderedDict([('fc2', tensor([[-1.5125, 0.9334]], grad_fn=<AddmmBackward>)),
('interaction', tensor([[-0.0687, -0.1462]], grad_fn=<MulBackward0>)),
('nested', tensor([[-0.1697, 0.1432, 0.2959]], grad_fn=<AddmmBackward>))])
# model_output is None if keep_ouput is False
# if keep_output is True the model_output contains the final model's output
```
%package help
Summary: Development documents and examples for torch-intermediate-layer-getter
Provides: python3-torch-intermediate-layer-getter-doc
%description help
Simple easy to use module to get the intermediate results from chosen submodules. Supports submodule annidation. Inspired in [this](https://github.com/pytorch/vision/blob/f76e598d47879dbd917bf5936bbd11ff41632787/torchvision/models/_utils.py#L7) but does not assume that submodules are executed sequentially.
# Installation
```sh
pip install torch_intermediate_layer_getter
```
# Usage
## Example
```python
import torch
import torch.nn as nn
from torch_intermediate_layer_getter import IntermediateLayerGetter as MidGetter
class Model(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(2, 2)
self.fc2 = nn.Linear(2, 2)
self.nested = nn.Sequential(
nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 3)),
nn.Linear(3, 1),
)
self.interaction_idty = nn.Identity() # Simple trick for operations not performed as modules
def forward(self, x):
x1 = self.fc1(x)
x2 = self.fc2(x)
interaction = x1 * x2
self.interaction_idty(interaction)
x_out = self.nested(interaction)
return x_out
model = Model()
return_layers = {
'fc2': 'fc2',
'nested.0.1': 'nested',
'interaction_idty': 'interaction',
}
mid_getter = MidGetter(model, return_layers=return_layers, keep_output=True)
mid_outputs, model_output = mid_getter(torch.randn(1, 2))
print(model_output)
>> tensor([[0.3219]], grad_fn=<AddmmBackward>)
print(mid_outputs)
>> OrderedDict([('fc2', tensor([[-1.5125, 0.9334]], grad_fn=<AddmmBackward>)),
('interaction', tensor([[-0.0687, -0.1462]], grad_fn=<MulBackward0>)),
('nested', tensor([[-0.1697, 0.1432, 0.2959]], grad_fn=<AddmmBackward>))])
# model_output is None if keep_ouput is False
# if keep_output is True the model_output contains the final model's output
```
%prep
%autosetup -n torch_intermediate_layer_getter-0.1.post1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-torch-intermediate-layer-getter -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.post1-1
- Package Spec generated
|