diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-10 04:32:32 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-10 04:32:32 +0000 |
| commit | fae8bd1e191cb0a9f9c0e776fe5d6d038ed90e30 (patch) | |
| tree | 7fa9359a423b674c397bb54116dca197ecd39af0 | |
| parent | 9405c8f763bcd5877374a251cf1968d6984136ee (diff) | |
automatic import of python-torch-spline-convopeneuler20.03
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-torch-spline-conv.spec | 477 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 479 insertions, 0 deletions
@@ -0,0 +1 @@ +/torch_spline_conv-1.2.2.tar.gz diff --git a/python-torch-spline-conv.spec b/python-torch-spline-conv.spec new file mode 100644 index 0000000..cc3f709 --- /dev/null +++ b/python-torch-spline-conv.spec @@ -0,0 +1,477 @@ +%global _empty_manifest_terminate_build 0 +Name: python-torch-spline-conv +Version: 1.2.2 +Release: 1 +Summary: Implementation of the Spline-Based Convolution Operator of SplineCNN in PyTorch +License: MIT License +URL: https://github.com/rusty1s/pytorch_spline_conv +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a0/50/5f80c47bf09b561ded0981b088ab0064424843696aa35b3b83afde421e56/torch_spline_conv-1.2.2.tar.gz +BuildArch: noarch + + +%description +This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper: +Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich MΓΌller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018) +The operator works on all floating point data types and is implemented both for CPU and GPU. +## Installation +### Anaconda +**Update:** You can now install `pytorch-spline-conv` via [Anaconda](https://anaconda.org/pyg/pytorch-spline-conv) for all major OS/PyTorch/CUDA combinations π€ +Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run +``` +conda install pytorch-spline-conv -c pyg +``` +### Binaries +We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl). +#### PyTorch 2.0 +To install the binaries for PyTorch 2.0.0, simply run +``` +pip install torch-spline-conv -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html +``` +where `${CUDA}` should be replaced by either `cpu`, `cu117`, or `cu118` depending on your PyTorch installation. +| | `cpu` | `cu117` | `cu118` | +|-------------|-------|---------|---------| +| **Linux** | β
| β
| β
| +| **Windows** | β
| β
| β
| +| **macOS** | β
| | | +#### PyTorch 1.13 +To install the binaries for PyTorch 1.13.0, simply run +``` +pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html +``` +where `${CUDA}` should be replaced by either `cpu`, `cu116`, or `cu117` depending on your PyTorch installation. +| | `cpu` | `cu116` | `cu117` | +|-------------|-------|---------|---------| +| **Linux** | β
| β
| β
| +| **Windows** | β
| β
| β
| +| **macOS** | β
| | | +**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0 and PyTorch 1.12.0/1.12.1 (following the same procedure). +For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source. +You can look up the latest supported version number [here](https://data.pyg.org/whl). +### From source +Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*: +``` +$ python -c "import torch; print(torch.__version__)" +>>> 1.4.0 +$ echo $PATH +>>> /usr/local/cuda/bin:... +$ echo $CPATH +>>> /usr/local/cuda/include:... +``` +Then run: +``` +pip install torch-spline-conv +``` +When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail. +In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*: +``` +export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX" +``` +## Usage +```python +from torch_spline_conv import spline_conv +out = spline_conv(x, + edge_index, + pseudo, + weight, + kernel_size, + is_open_spline, + degree=1, + norm=True, + root_weight=None, + bias=None) +``` +Applies the spline-based convolution operator +<p align="center"> + <img width="50%" src="https://user-images.githubusercontent.com/6945922/38684093-36d9c52e-3e6f-11e8-9021-db054223c6b9.png" /> +</p> +over several node features of an input graph. +The kernel function is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees. +<p align="center"> + <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685443-3a2a0c68-3e72-11e8-8e13-9ce9ad8fe43e.png" /> + <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685459-42b2bcae-3e72-11e8-88cc-4b61e41dbd93.png" /> +</p> +### Parameters +* **x** *(Tensor)* - Input node features of shape `(number_of_nodes x in_channels)`. +* **edge_index** *(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)`. +* **pseudo** *(Tensor)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)` in the fixed interval [0, 1]. +* **weight** *(Tensor)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)`. +* **kernel_size** *(LongTensor)* - Number of trainable weight parameters in each edge dimension. +* **is_open_spline** *(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension. +* **degree** *(int, optional)* - B-spline basis degree. (default: `1`) +* **norm** *(bool, optional)*: Whether to normalize output by node degree. (default: `True`) +* **root_weight** *(Tensor, optional)* - Additional shared trainable parameters for each feature of the root node of shape `(in_channels x out_channels)`. (default: `None`) +* **bias** *(Tensor, optional)* - Optional bias of shape `(out_channels)`. (default: `None`) +### Returns +* **out** *(Tensor)* - Out node features of shape `(number_of_nodes x out_channels)`. +### Example +```python +import torch +from torch_spline_conv import spline_conv +x = torch.rand((4, 2), dtype=torch.float) # 4 nodes with 2 features each +edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]]) # 6 edges +pseudo = torch.rand((6, 2), dtype=torch.float) # two-dimensional edge attributes +weight = torch.rand((25, 2, 4), dtype=torch.float) # 25 parameters for in_channels x out_channels +kernel_size = torch.tensor([5, 5]) # 5 parameters in each edge dimension +is_open_spline = torch.tensor([1, 1], dtype=torch.uint8) # only use open B-splines +degree = 1 # B-spline degree of 1 +norm = True # Normalize output by node degree. +root_weight = torch.rand((2, 4), dtype=torch.float) # separately weight root nodes +bias = None # do not apply an additional bias +out = spline_conv(x, edge_index, pseudo, weight, kernel_size, + is_open_spline, degree, norm, root_weight, bias) +print(out.size()) +torch.Size([4, 4]) # 4 nodes with 4 features each +``` +## Cite +Please cite our paper if you use this code in your own work: +``` +@inproceedings{Fey/etal/2018, + title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels}, + author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich}, + booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, + year={2018}, +} +``` +## Running tests +``` +pytest +``` +## C++ API +`torch-spline-conv` also offers a C++ API that contains C++ equivalent of python models. +``` +mkdir build +cd build +# Add -DWITH_CUDA=on support for the CUDA if needed +cmake .. +make +make install +``` + +%package -n python3-torch-spline-conv +Summary: Implementation of the Spline-Based Convolution Operator of SplineCNN in PyTorch +Provides: python-torch-spline-conv +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-torch-spline-conv +This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper: +Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich MΓΌller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018) +The operator works on all floating point data types and is implemented both for CPU and GPU. +## Installation +### Anaconda +**Update:** You can now install `pytorch-spline-conv` via [Anaconda](https://anaconda.org/pyg/pytorch-spline-conv) for all major OS/PyTorch/CUDA combinations π€ +Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run +``` +conda install pytorch-spline-conv -c pyg +``` +### Binaries +We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl). +#### PyTorch 2.0 +To install the binaries for PyTorch 2.0.0, simply run +``` +pip install torch-spline-conv -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html +``` +where `${CUDA}` should be replaced by either `cpu`, `cu117`, or `cu118` depending on your PyTorch installation. +| | `cpu` | `cu117` | `cu118` | +|-------------|-------|---------|---------| +| **Linux** | β
| β
| β
| +| **Windows** | β
| β
| β
| +| **macOS** | β
| | | +#### PyTorch 1.13 +To install the binaries for PyTorch 1.13.0, simply run +``` +pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html +``` +where `${CUDA}` should be replaced by either `cpu`, `cu116`, or `cu117` depending on your PyTorch installation. +| | `cpu` | `cu116` | `cu117` | +|-------------|-------|---------|---------| +| **Linux** | β
| β
| β
| +| **Windows** | β
| β
| β
| +| **macOS** | β
| | | +**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0 and PyTorch 1.12.0/1.12.1 (following the same procedure). +For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source. +You can look up the latest supported version number [here](https://data.pyg.org/whl). +### From source +Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*: +``` +$ python -c "import torch; print(torch.__version__)" +>>> 1.4.0 +$ echo $PATH +>>> /usr/local/cuda/bin:... +$ echo $CPATH +>>> /usr/local/cuda/include:... +``` +Then run: +``` +pip install torch-spline-conv +``` +When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail. +In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*: +``` +export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX" +``` +## Usage +```python +from torch_spline_conv import spline_conv +out = spline_conv(x, + edge_index, + pseudo, + weight, + kernel_size, + is_open_spline, + degree=1, + norm=True, + root_weight=None, + bias=None) +``` +Applies the spline-based convolution operator +<p align="center"> + <img width="50%" src="https://user-images.githubusercontent.com/6945922/38684093-36d9c52e-3e6f-11e8-9021-db054223c6b9.png" /> +</p> +over several node features of an input graph. +The kernel function is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees. +<p align="center"> + <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685443-3a2a0c68-3e72-11e8-8e13-9ce9ad8fe43e.png" /> + <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685459-42b2bcae-3e72-11e8-88cc-4b61e41dbd93.png" /> +</p> +### Parameters +* **x** *(Tensor)* - Input node features of shape `(number_of_nodes x in_channels)`. +* **edge_index** *(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)`. +* **pseudo** *(Tensor)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)` in the fixed interval [0, 1]. +* **weight** *(Tensor)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)`. +* **kernel_size** *(LongTensor)* - Number of trainable weight parameters in each edge dimension. +* **is_open_spline** *(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension. +* **degree** *(int, optional)* - B-spline basis degree. (default: `1`) +* **norm** *(bool, optional)*: Whether to normalize output by node degree. (default: `True`) +* **root_weight** *(Tensor, optional)* - Additional shared trainable parameters for each feature of the root node of shape `(in_channels x out_channels)`. (default: `None`) +* **bias** *(Tensor, optional)* - Optional bias of shape `(out_channels)`. (default: `None`) +### Returns +* **out** *(Tensor)* - Out node features of shape `(number_of_nodes x out_channels)`. +### Example +```python +import torch +from torch_spline_conv import spline_conv +x = torch.rand((4, 2), dtype=torch.float) # 4 nodes with 2 features each +edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]]) # 6 edges +pseudo = torch.rand((6, 2), dtype=torch.float) # two-dimensional edge attributes +weight = torch.rand((25, 2, 4), dtype=torch.float) # 25 parameters for in_channels x out_channels +kernel_size = torch.tensor([5, 5]) # 5 parameters in each edge dimension +is_open_spline = torch.tensor([1, 1], dtype=torch.uint8) # only use open B-splines +degree = 1 # B-spline degree of 1 +norm = True # Normalize output by node degree. +root_weight = torch.rand((2, 4), dtype=torch.float) # separately weight root nodes +bias = None # do not apply an additional bias +out = spline_conv(x, edge_index, pseudo, weight, kernel_size, + is_open_spline, degree, norm, root_weight, bias) +print(out.size()) +torch.Size([4, 4]) # 4 nodes with 4 features each +``` +## Cite +Please cite our paper if you use this code in your own work: +``` +@inproceedings{Fey/etal/2018, + title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels}, + author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich}, + booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, + year={2018}, +} +``` +## Running tests +``` +pytest +``` +## C++ API +`torch-spline-conv` also offers a C++ API that contains C++ equivalent of python models. +``` +mkdir build +cd build +# Add -DWITH_CUDA=on support for the CUDA if needed +cmake .. +make +make install +``` + +%package help +Summary: Development documents and examples for torch-spline-conv +Provides: python3-torch-spline-conv-doc +%description help +This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper: +Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich MΓΌller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018) +The operator works on all floating point data types and is implemented both for CPU and GPU. +## Installation +### Anaconda +**Update:** You can now install `pytorch-spline-conv` via [Anaconda](https://anaconda.org/pyg/pytorch-spline-conv) for all major OS/PyTorch/CUDA combinations π€ +Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run +``` +conda install pytorch-spline-conv -c pyg +``` +### Binaries +We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl). +#### PyTorch 2.0 +To install the binaries for PyTorch 2.0.0, simply run +``` +pip install torch-spline-conv -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html +``` +where `${CUDA}` should be replaced by either `cpu`, `cu117`, or `cu118` depending on your PyTorch installation. +| | `cpu` | `cu117` | `cu118` | +|-------------|-------|---------|---------| +| **Linux** | β
| β
| β
| +| **Windows** | β
| β
| β
| +| **macOS** | β
| | | +#### PyTorch 1.13 +To install the binaries for PyTorch 1.13.0, simply run +``` +pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html +``` +where `${CUDA}` should be replaced by either `cpu`, `cu116`, or `cu117` depending on your PyTorch installation. +| | `cpu` | `cu116` | `cu117` | +|-------------|-------|---------|---------| +| **Linux** | β
| β
| β
| +| **Windows** | β
| β
| β
| +| **macOS** | β
| | | +**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0 and PyTorch 1.12.0/1.12.1 (following the same procedure). +For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source. +You can look up the latest supported version number [here](https://data.pyg.org/whl). +### From source +Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*: +``` +$ python -c "import torch; print(torch.__version__)" +>>> 1.4.0 +$ echo $PATH +>>> /usr/local/cuda/bin:... +$ echo $CPATH +>>> /usr/local/cuda/include:... +``` +Then run: +``` +pip install torch-spline-conv +``` +When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail. +In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*: +``` +export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX" +``` +## Usage +```python +from torch_spline_conv import spline_conv +out = spline_conv(x, + edge_index, + pseudo, + weight, + kernel_size, + is_open_spline, + degree=1, + norm=True, + root_weight=None, + bias=None) +``` +Applies the spline-based convolution operator +<p align="center"> + <img width="50%" src="https://user-images.githubusercontent.com/6945922/38684093-36d9c52e-3e6f-11e8-9021-db054223c6b9.png" /> +</p> +over several node features of an input graph. +The kernel function is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees. +<p align="center"> + <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685443-3a2a0c68-3e72-11e8-8e13-9ce9ad8fe43e.png" /> + <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685459-42b2bcae-3e72-11e8-88cc-4b61e41dbd93.png" /> +</p> +### Parameters +* **x** *(Tensor)* - Input node features of shape `(number_of_nodes x in_channels)`. +* **edge_index** *(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)`. +* **pseudo** *(Tensor)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)` in the fixed interval [0, 1]. +* **weight** *(Tensor)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)`. +* **kernel_size** *(LongTensor)* - Number of trainable weight parameters in each edge dimension. +* **is_open_spline** *(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension. +* **degree** *(int, optional)* - B-spline basis degree. (default: `1`) +* **norm** *(bool, optional)*: Whether to normalize output by node degree. (default: `True`) +* **root_weight** *(Tensor, optional)* - Additional shared trainable parameters for each feature of the root node of shape `(in_channels x out_channels)`. (default: `None`) +* **bias** *(Tensor, optional)* - Optional bias of shape `(out_channels)`. (default: `None`) +### Returns +* **out** *(Tensor)* - Out node features of shape `(number_of_nodes x out_channels)`. +### Example +```python +import torch +from torch_spline_conv import spline_conv +x = torch.rand((4, 2), dtype=torch.float) # 4 nodes with 2 features each +edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]]) # 6 edges +pseudo = torch.rand((6, 2), dtype=torch.float) # two-dimensional edge attributes +weight = torch.rand((25, 2, 4), dtype=torch.float) # 25 parameters for in_channels x out_channels +kernel_size = torch.tensor([5, 5]) # 5 parameters in each edge dimension +is_open_spline = torch.tensor([1, 1], dtype=torch.uint8) # only use open B-splines +degree = 1 # B-spline degree of 1 +norm = True # Normalize output by node degree. +root_weight = torch.rand((2, 4), dtype=torch.float) # separately weight root nodes +bias = None # do not apply an additional bias +out = spline_conv(x, edge_index, pseudo, weight, kernel_size, + is_open_spline, degree, norm, root_weight, bias) +print(out.size()) +torch.Size([4, 4]) # 4 nodes with 4 features each +``` +## Cite +Please cite our paper if you use this code in your own work: +``` +@inproceedings{Fey/etal/2018, + title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels}, + author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich}, + booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, + year={2018}, +} +``` +## Running tests +``` +pytest +``` +## C++ API +`torch-spline-conv` also offers a C++ API that contains C++ equivalent of python models. +``` +mkdir build +cd build +# Add -DWITH_CUDA=on support for the CUDA if needed +cmake .. +make +make install +``` + +%prep +%autosetup -n torch-spline-conv-1.2.2 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-torch-spline-conv -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.2-1 +- Package Spec generated @@ -0,0 +1 @@ +ec7fbea1569802d7fc5f12f47f706507 torch_spline_conv-1.2.2.tar.gz |
