summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-10 04:32:32 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-10 04:32:32 +0000
commitfae8bd1e191cb0a9f9c0e776fe5d6d038ed90e30 (patch)
tree7fa9359a423b674c397bb54116dca197ecd39af0
parent9405c8f763bcd5877374a251cf1968d6984136ee (diff)
automatic import of python-torch-spline-convopeneuler20.03
-rw-r--r--.gitignore1
-rw-r--r--python-torch-spline-conv.spec477
-rw-r--r--sources1
3 files changed, 479 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..0eb3465 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/torch_spline_conv-1.2.2.tar.gz
diff --git a/python-torch-spline-conv.spec b/python-torch-spline-conv.spec
new file mode 100644
index 0000000..cc3f709
--- /dev/null
+++ b/python-torch-spline-conv.spec
@@ -0,0 +1,477 @@
+%global _empty_manifest_terminate_build 0
+Name: python-torch-spline-conv
+Version: 1.2.2
+Release: 1
+Summary: Implementation of the Spline-Based Convolution Operator of SplineCNN in PyTorch
+License: MIT License
+URL: https://github.com/rusty1s/pytorch_spline_conv
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a0/50/5f80c47bf09b561ded0981b088ab0064424843696aa35b3b83afde421e56/torch_spline_conv-1.2.2.tar.gz
+BuildArch: noarch
+
+
+%description
+This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper:
+Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich MΓΌller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018)
+The operator works on all floating point data types and is implemented both for CPU and GPU.
+## Installation
+### Anaconda
+**Update:** You can now install `pytorch-spline-conv` via [Anaconda](https://anaconda.org/pyg/pytorch-spline-conv) for all major OS/PyTorch/CUDA combinations πŸ€—
+Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run
+```
+conda install pytorch-spline-conv -c pyg
+```
+### Binaries
+We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
+#### PyTorch 2.0
+To install the binaries for PyTorch 2.0.0, simply run
+```
+pip install torch-spline-conv -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html
+```
+where `${CUDA}` should be replaced by either `cpu`, `cu117`, or `cu118` depending on your PyTorch installation.
+| | `cpu` | `cu117` | `cu118` |
+|-------------|-------|---------|---------|
+| **Linux** | βœ… | βœ… | βœ… |
+| **Windows** | βœ… | βœ… | βœ… |
+| **macOS** | βœ… | | |
+#### PyTorch 1.13
+To install the binaries for PyTorch 1.13.0, simply run
+```
+pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html
+```
+where `${CUDA}` should be replaced by either `cpu`, `cu116`, or `cu117` depending on your PyTorch installation.
+| | `cpu` | `cu116` | `cu117` |
+|-------------|-------|---------|---------|
+| **Linux** | βœ… | βœ… | βœ… |
+| **Windows** | βœ… | βœ… | βœ… |
+| **macOS** | βœ… | | |
+**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0 and PyTorch 1.12.0/1.12.1 (following the same procedure).
+For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source.
+You can look up the latest supported version number [here](https://data.pyg.org/whl).
+### From source
+Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
+```
+$ python -c "import torch; print(torch.__version__)"
+>>> 1.4.0
+$ echo $PATH
+>>> /usr/local/cuda/bin:...
+$ echo $CPATH
+>>> /usr/local/cuda/include:...
+```
+Then run:
+```
+pip install torch-spline-conv
+```
+When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
+In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:
+```
+export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
+```
+## Usage
+```python
+from torch_spline_conv import spline_conv
+out = spline_conv(x,
+ edge_index,
+ pseudo,
+ weight,
+ kernel_size,
+ is_open_spline,
+ degree=1,
+ norm=True,
+ root_weight=None,
+ bias=None)
+```
+Applies the spline-based convolution operator
+<p align="center">
+ <img width="50%" src="https://user-images.githubusercontent.com/6945922/38684093-36d9c52e-3e6f-11e8-9021-db054223c6b9.png" />
+</p>
+over several node features of an input graph.
+The kernel function is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees.
+<p align="center">
+ <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685443-3a2a0c68-3e72-11e8-8e13-9ce9ad8fe43e.png" />
+ <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685459-42b2bcae-3e72-11e8-88cc-4b61e41dbd93.png" />
+</p>
+### Parameters
+* **x** *(Tensor)* - Input node features of shape `(number_of_nodes x in_channels)`.
+* **edge_index** *(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)`.
+* **pseudo** *(Tensor)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)` in the fixed interval [0, 1].
+* **weight** *(Tensor)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)`.
+* **kernel_size** *(LongTensor)* - Number of trainable weight parameters in each edge dimension.
+* **is_open_spline** *(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension.
+* **degree** *(int, optional)* - B-spline basis degree. (default: `1`)
+* **norm** *(bool, optional)*: Whether to normalize output by node degree. (default: `True`)
+* **root_weight** *(Tensor, optional)* - Additional shared trainable parameters for each feature of the root node of shape `(in_channels x out_channels)`. (default: `None`)
+* **bias** *(Tensor, optional)* - Optional bias of shape `(out_channels)`. (default: `None`)
+### Returns
+* **out** *(Tensor)* - Out node features of shape `(number_of_nodes x out_channels)`.
+### Example
+```python
+import torch
+from torch_spline_conv import spline_conv
+x = torch.rand((4, 2), dtype=torch.float) # 4 nodes with 2 features each
+edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]]) # 6 edges
+pseudo = torch.rand((6, 2), dtype=torch.float) # two-dimensional edge attributes
+weight = torch.rand((25, 2, 4), dtype=torch.float) # 25 parameters for in_channels x out_channels
+kernel_size = torch.tensor([5, 5]) # 5 parameters in each edge dimension
+is_open_spline = torch.tensor([1, 1], dtype=torch.uint8) # only use open B-splines
+degree = 1 # B-spline degree of 1
+norm = True # Normalize output by node degree.
+root_weight = torch.rand((2, 4), dtype=torch.float) # separately weight root nodes
+bias = None # do not apply an additional bias
+out = spline_conv(x, edge_index, pseudo, weight, kernel_size,
+ is_open_spline, degree, norm, root_weight, bias)
+print(out.size())
+torch.Size([4, 4]) # 4 nodes with 4 features each
+```
+## Cite
+Please cite our paper if you use this code in your own work:
+```
+@inproceedings{Fey/etal/2018,
+ title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels},
+ author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
+ year={2018},
+}
+```
+## Running tests
+```
+pytest
+```
+## C++ API
+`torch-spline-conv` also offers a C++ API that contains C++ equivalent of python models.
+```
+mkdir build
+cd build
+# Add -DWITH_CUDA=on support for the CUDA if needed
+cmake ..
+make
+make install
+```
+
+%package -n python3-torch-spline-conv
+Summary: Implementation of the Spline-Based Convolution Operator of SplineCNN in PyTorch
+Provides: python-torch-spline-conv
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-torch-spline-conv
+This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper:
+Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich MΓΌller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018)
+The operator works on all floating point data types and is implemented both for CPU and GPU.
+## Installation
+### Anaconda
+**Update:** You can now install `pytorch-spline-conv` via [Anaconda](https://anaconda.org/pyg/pytorch-spline-conv) for all major OS/PyTorch/CUDA combinations πŸ€—
+Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run
+```
+conda install pytorch-spline-conv -c pyg
+```
+### Binaries
+We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
+#### PyTorch 2.0
+To install the binaries for PyTorch 2.0.0, simply run
+```
+pip install torch-spline-conv -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html
+```
+where `${CUDA}` should be replaced by either `cpu`, `cu117`, or `cu118` depending on your PyTorch installation.
+| | `cpu` | `cu117` | `cu118` |
+|-------------|-------|---------|---------|
+| **Linux** | βœ… | βœ… | βœ… |
+| **Windows** | βœ… | βœ… | βœ… |
+| **macOS** | βœ… | | |
+#### PyTorch 1.13
+To install the binaries for PyTorch 1.13.0, simply run
+```
+pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html
+```
+where `${CUDA}` should be replaced by either `cpu`, `cu116`, or `cu117` depending on your PyTorch installation.
+| | `cpu` | `cu116` | `cu117` |
+|-------------|-------|---------|---------|
+| **Linux** | βœ… | βœ… | βœ… |
+| **Windows** | βœ… | βœ… | βœ… |
+| **macOS** | βœ… | | |
+**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0 and PyTorch 1.12.0/1.12.1 (following the same procedure).
+For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source.
+You can look up the latest supported version number [here](https://data.pyg.org/whl).
+### From source
+Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
+```
+$ python -c "import torch; print(torch.__version__)"
+>>> 1.4.0
+$ echo $PATH
+>>> /usr/local/cuda/bin:...
+$ echo $CPATH
+>>> /usr/local/cuda/include:...
+```
+Then run:
+```
+pip install torch-spline-conv
+```
+When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
+In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:
+```
+export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
+```
+## Usage
+```python
+from torch_spline_conv import spline_conv
+out = spline_conv(x,
+ edge_index,
+ pseudo,
+ weight,
+ kernel_size,
+ is_open_spline,
+ degree=1,
+ norm=True,
+ root_weight=None,
+ bias=None)
+```
+Applies the spline-based convolution operator
+<p align="center">
+ <img width="50%" src="https://user-images.githubusercontent.com/6945922/38684093-36d9c52e-3e6f-11e8-9021-db054223c6b9.png" />
+</p>
+over several node features of an input graph.
+The kernel function is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees.
+<p align="center">
+ <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685443-3a2a0c68-3e72-11e8-8e13-9ce9ad8fe43e.png" />
+ <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685459-42b2bcae-3e72-11e8-88cc-4b61e41dbd93.png" />
+</p>
+### Parameters
+* **x** *(Tensor)* - Input node features of shape `(number_of_nodes x in_channels)`.
+* **edge_index** *(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)`.
+* **pseudo** *(Tensor)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)` in the fixed interval [0, 1].
+* **weight** *(Tensor)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)`.
+* **kernel_size** *(LongTensor)* - Number of trainable weight parameters in each edge dimension.
+* **is_open_spline** *(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension.
+* **degree** *(int, optional)* - B-spline basis degree. (default: `1`)
+* **norm** *(bool, optional)*: Whether to normalize output by node degree. (default: `True`)
+* **root_weight** *(Tensor, optional)* - Additional shared trainable parameters for each feature of the root node of shape `(in_channels x out_channels)`. (default: `None`)
+* **bias** *(Tensor, optional)* - Optional bias of shape `(out_channels)`. (default: `None`)
+### Returns
+* **out** *(Tensor)* - Out node features of shape `(number_of_nodes x out_channels)`.
+### Example
+```python
+import torch
+from torch_spline_conv import spline_conv
+x = torch.rand((4, 2), dtype=torch.float) # 4 nodes with 2 features each
+edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]]) # 6 edges
+pseudo = torch.rand((6, 2), dtype=torch.float) # two-dimensional edge attributes
+weight = torch.rand((25, 2, 4), dtype=torch.float) # 25 parameters for in_channels x out_channels
+kernel_size = torch.tensor([5, 5]) # 5 parameters in each edge dimension
+is_open_spline = torch.tensor([1, 1], dtype=torch.uint8) # only use open B-splines
+degree = 1 # B-spline degree of 1
+norm = True # Normalize output by node degree.
+root_weight = torch.rand((2, 4), dtype=torch.float) # separately weight root nodes
+bias = None # do not apply an additional bias
+out = spline_conv(x, edge_index, pseudo, weight, kernel_size,
+ is_open_spline, degree, norm, root_weight, bias)
+print(out.size())
+torch.Size([4, 4]) # 4 nodes with 4 features each
+```
+## Cite
+Please cite our paper if you use this code in your own work:
+```
+@inproceedings{Fey/etal/2018,
+ title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels},
+ author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
+ year={2018},
+}
+```
+## Running tests
+```
+pytest
+```
+## C++ API
+`torch-spline-conv` also offers a C++ API that contains C++ equivalent of python models.
+```
+mkdir build
+cd build
+# Add -DWITH_CUDA=on support for the CUDA if needed
+cmake ..
+make
+make install
+```
+
+%package help
+Summary: Development documents and examples for torch-spline-conv
+Provides: python3-torch-spline-conv-doc
+%description help
+This is a PyTorch implementation of the spline-based convolution operator of SplineCNN, as described in our paper:
+Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich MΓΌller: [SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels](https://arxiv.org/abs/1711.08920) (CVPR 2018)
+The operator works on all floating point data types and is implemented both for CPU and GPU.
+## Installation
+### Anaconda
+**Update:** You can now install `pytorch-spline-conv` via [Anaconda](https://anaconda.org/pyg/pytorch-spline-conv) for all major OS/PyTorch/CUDA combinations πŸ€—
+Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run
+```
+conda install pytorch-spline-conv -c pyg
+```
+### Binaries
+We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
+#### PyTorch 2.0
+To install the binaries for PyTorch 2.0.0, simply run
+```
+pip install torch-spline-conv -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html
+```
+where `${CUDA}` should be replaced by either `cpu`, `cu117`, or `cu118` depending on your PyTorch installation.
+| | `cpu` | `cu117` | `cu118` |
+|-------------|-------|---------|---------|
+| **Linux** | βœ… | βœ… | βœ… |
+| **Windows** | βœ… | βœ… | βœ… |
+| **macOS** | βœ… | | |
+#### PyTorch 1.13
+To install the binaries for PyTorch 1.13.0, simply run
+```
+pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html
+```
+where `${CUDA}` should be replaced by either `cpu`, `cu116`, or `cu117` depending on your PyTorch installation.
+| | `cpu` | `cu116` | `cu117` |
+|-------------|-------|---------|---------|
+| **Linux** | βœ… | βœ… | βœ… |
+| **Windows** | βœ… | βœ… | βœ… |
+| **macOS** | βœ… | | |
+**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0 and PyTorch 1.12.0/1.12.1 (following the same procedure).
+For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source.
+You can look up the latest supported version number [here](https://data.pyg.org/whl).
+### From source
+Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
+```
+$ python -c "import torch; print(torch.__version__)"
+>>> 1.4.0
+$ echo $PATH
+>>> /usr/local/cuda/bin:...
+$ echo $CPATH
+>>> /usr/local/cuda/include:...
+```
+Then run:
+```
+pip install torch-spline-conv
+```
+When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
+In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:
+```
+export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
+```
+## Usage
+```python
+from torch_spline_conv import spline_conv
+out = spline_conv(x,
+ edge_index,
+ pseudo,
+ weight,
+ kernel_size,
+ is_open_spline,
+ degree=1,
+ norm=True,
+ root_weight=None,
+ bias=None)
+```
+Applies the spline-based convolution operator
+<p align="center">
+ <img width="50%" src="https://user-images.githubusercontent.com/6945922/38684093-36d9c52e-3e6f-11e8-9021-db054223c6b9.png" />
+</p>
+over several node features of an input graph.
+The kernel function is defined over the weighted B-spline tensor product basis, as shown below for different B-spline degrees.
+<p align="center">
+ <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685443-3a2a0c68-3e72-11e8-8e13-9ce9ad8fe43e.png" />
+ <img width="45%" src="https://user-images.githubusercontent.com/6945922/38685459-42b2bcae-3e72-11e8-88cc-4b61e41dbd93.png" />
+</p>
+### Parameters
+* **x** *(Tensor)* - Input node features of shape `(number_of_nodes x in_channels)`.
+* **edge_index** *(LongTensor)* - Graph edges, given by source and target indices, of shape `(2 x number_of_edges)`.
+* **pseudo** *(Tensor)* - Edge attributes, ie. pseudo coordinates, of shape `(number_of_edges x number_of_edge_attributes)` in the fixed interval [0, 1].
+* **weight** *(Tensor)* - Trainable weight parameters of shape `(kernel_size x in_channels x out_channels)`.
+* **kernel_size** *(LongTensor)* - Number of trainable weight parameters in each edge dimension.
+* **is_open_spline** *(ByteTensor)* - Whether to use open or closed B-spline bases for each dimension.
+* **degree** *(int, optional)* - B-spline basis degree. (default: `1`)
+* **norm** *(bool, optional)*: Whether to normalize output by node degree. (default: `True`)
+* **root_weight** *(Tensor, optional)* - Additional shared trainable parameters for each feature of the root node of shape `(in_channels x out_channels)`. (default: `None`)
+* **bias** *(Tensor, optional)* - Optional bias of shape `(out_channels)`. (default: `None`)
+### Returns
+* **out** *(Tensor)* - Out node features of shape `(number_of_nodes x out_channels)`.
+### Example
+```python
+import torch
+from torch_spline_conv import spline_conv
+x = torch.rand((4, 2), dtype=torch.float) # 4 nodes with 2 features each
+edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]]) # 6 edges
+pseudo = torch.rand((6, 2), dtype=torch.float) # two-dimensional edge attributes
+weight = torch.rand((25, 2, 4), dtype=torch.float) # 25 parameters for in_channels x out_channels
+kernel_size = torch.tensor([5, 5]) # 5 parameters in each edge dimension
+is_open_spline = torch.tensor([1, 1], dtype=torch.uint8) # only use open B-splines
+degree = 1 # B-spline degree of 1
+norm = True # Normalize output by node degree.
+root_weight = torch.rand((2, 4), dtype=torch.float) # separately weight root nodes
+bias = None # do not apply an additional bias
+out = spline_conv(x, edge_index, pseudo, weight, kernel_size,
+ is_open_spline, degree, norm, root_weight, bias)
+print(out.size())
+torch.Size([4, 4]) # 4 nodes with 4 features each
+```
+## Cite
+Please cite our paper if you use this code in your own work:
+```
+@inproceedings{Fey/etal/2018,
+ title={{SplineCNN}: Fast Geometric Deep Learning with Continuous {B}-Spline Kernels},
+ author={Fey, Matthias and Lenssen, Jan Eric and Weichert, Frank and M{\"u}ller, Heinrich},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
+ year={2018},
+}
+```
+## Running tests
+```
+pytest
+```
+## C++ API
+`torch-spline-conv` also offers a C++ API that contains C++ equivalent of python models.
+```
+mkdir build
+cd build
+# Add -DWITH_CUDA=on support for the CUDA if needed
+cmake ..
+make
+make install
+```
+
+%prep
+%autosetup -n torch-spline-conv-1.2.2
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-torch-spline-conv -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.2-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..76666eb
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+ec7fbea1569802d7fc5f12f47f706507 torch_spline_conv-1.2.2.tar.gz