summaryrefslogtreecommitdiff
path: root/python-torchkbnufft.spec
blob: 690d9272b33e900ce431ddd9949498e875cc3856 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
%global _empty_manifest_terminate_build 0
Name:		python-torchkbnufft
Version:	1.4.0
Release:	1
Summary:	A high-level, easy-to-deploy non-uniform Fast Fourier Transform in PyTorch.
License:	MIT
URL:		https://torchkbnufft.readthedocs.io/en/stable/
Source0:	https://mirrors.aliyun.com/pypi/web/packages/f4/1c/f988abac61f9df2e34852e78b7fb92f5ac7dec3103cad213e66befbf6ecb/torchkbnufft-1.4.0.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-torch
Requires:	python3-black
Requires:	python3-flake8
Requires:	python3-mypy
Requires:	python3-pytest
Requires:	python3-black
Requires:	python3-flake8
Requires:	python3-mypy
Requires:	python3-numpy
Requires:	python3-pytest
Requires:	python3-scipy
Requires:	python3-torch

%description
# torchkbnufft

[![LICENSE](https://img.shields.io/badge/license-MIT-blue.svg)](LICENSE)
![CI Badge](https://github.com/mmuckley/torchkbnufft/workflows/Build%20and%20test/badge.svg?branch=master) [![Documentation Status](https://readthedocs.org/projects/torchkbnufft/badge/?version=stable)](https://torchkbnufft.readthedocs.io/en/stable/?badge=latest) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Basic%20Example.ipynb)

[Documentation](https://torchkbnufft.readthedocs.io) | [GitHub](https://github.com/mmuckley/torchkbnufft) | [Notebook Examples](#examples)

Simple installation from PyPI:

```bash
pip install torchkbnufft
```

## About

`torchkbnufft` implements a non-uniform Fast Fourier Transform
[[1, 2](#references)] with Kaiser-Bessel gridding in PyTorch. The
implementation is completely in Python, facilitating flexible deployment in
readable code with no compilation. NUFFT functions are each wrapped as a
```torch.autograd.Function```, allowing backpropagation through NUFFT operators
for training neural networks.

This package was inspired in large part by the NUFFT implementation in the
[Michigan Image Reconstruction Toolbox (Matlab)](https://github.com/JeffFessler/mirt).

### Operation Modes and Stages

The package has three major classes of NUFFT operation mode: table-based NUFFT
interpolation, sparse matrix-based NUFFT interpolation, and forward/backward
operators with Toeplitz-embedded FFTs [[3](#references)]. Roughly, computation
speed follows:

| Type          | Speed                  |
| ------------- | ---------------------- |
| Toeplitz      | Fastest                |
| Table         | Medium                 |
| Sparse Matrix | Slow (not recommended) |

It is generally best to start with Table interpolation and then experiment with
the other modes for your problem.

Sensitivity maps can be incorporated by passing them into a `KbNufft` or
`KbNufftAdjoint` object.

## Documentation

An html-based documentation reference on
[Read the Docs](https://torchkbnufft.readthedocs.io).

Most files are accompanied with docstrings that can be read with ```help```
while running IPython. Example:

```python
from torchkbnufft import KbNufft

help(KbNufft)
```

## Examples

`torchkbnufft` can be used for N-D NUFFT transformations. The examples here
start with a simple 2D NUFFT, then expand it to SENSE (a task with multiple,
parallel 2D NUFFTs).

The last two examples demonstrate NUFFTs based on sparse matrix multiplications
(which can be useful for high-dimensional cases) and Toeplitz NUFFTs (which are
an extremely fast forward-backward NUFFT technique).

All examples have associated notebooks that you can run in Google Colab:

- [Basic Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Basic%20Example.ipynb)
- [SENSE-NUFFT Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/SENSE%20Example.ipynb)
- [Sparse Matrix Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Sparse%20Matrix%20Example.ipynb)
- [Toeplitz Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Toeplitz%20Example.ipynb)

### Simple Forward NUFFT

[Basic NUFFT Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Basic%20Example.ipynb)

The following code loads a Shepp-Logan phantom and computes a single radial
spoke of k-space data:

```python
import torch
import torchkbnufft as tkbn
import numpy as np
from skimage.data import shepp_logan_phantom

x = shepp_logan_phantom().astype(np.complex)
im_size = x.shape
# convert to tensor, unsqueeze batch and coil dimension
# output size: (1, 1, ny, nx)
x = torch.tensor(x).unsqueeze(0).unsqueeze(0).to(torch.complex64)

klength = 64
ktraj = np.stack(
    (np.zeros(64), np.linspace(-np.pi, np.pi, klength))
)
# convert to tensor, unsqueeze batch dimension
# output size: (2, klength)
ktraj = torch.tensor(ktraj, dtype=torch.float)

nufft_ob = tkbn.KbNufft(im_size=im_size)
# outputs a (1, 1, klength) vector of k-space data
kdata = nufft_ob(x, ktraj)
```

### SENSE-NUFFT

[SENSE-NUFFT Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/SENSE%20Example.ipynb)

The package also includes utilities for working with SENSE-NUFFT operators. The
above code can be modified to include sensitivity maps.

```python
smaps = torch.rand(1, 8, 400, 400) + 1j * torch.rand(1, 8, 400, 400)
sense_data = nufft_ob(x, ktraj, smaps=smaps.to(x))
```

This code first multiplies by the sensitivity coils in ```smaps```, then
computes a 64-length radial spoke for each coil. All operations are broadcast
across coils, which minimizes interaction with the Python interpreter, helping
computation speed.

### Sparse Matrix Precomputation

[Sparse Matrix Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Sparse%20Matrix%20Example.ipynb)

Sparse matrices are an alternative to table interpolation. Their speed can
vary, but they are a bit more accurate than standard table mode. The following
code calculates sparse interpolation matrices and uses them to compute a single
radial spoke of k-space data:

```python
adjnufft_ob = tkbn.KbNufftAdjoint(im_size=im_size)

# precompute the sparse interpolation matrices
interp_mats = tkbn.calc_tensor_spmatrix(
    ktraj,
    im_size=im_size
)

# use sparse matrices in adjoint
image = adjnufft_ob(kdata, ktraj, interp_mats)
```

Sparse matrix multiplication is only implemented for real numbers in PyTorch,
which can limit their speed.

### Toeplitz Embedding

[Toeplitz Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Toeplitz%20Example.ipynb)

The package includes routines for calculating embedded Toeplitz kernels and
using them as FFT filters for the forward/backward NUFFT operations
[[3](#references)]. This is very useful for gradient descent algorithms that
must use the forward/backward ops in calculating the gradient. The following
code shows an example:

```python
toep_ob = tkbn.ToepNufft()

# precompute the embedded Toeplitz FFT kernel
kernel = tkbn.calc_toeplitz_kernel(ktraj, im_size)

# use FFT kernel from embedded Toeplitz matrix
image = toep_ob(image, kernel)
```

### Running on the GPU

All of the examples included in this repository can be run on the GPU by
sending the NUFFT object and data to the GPU prior to the function call, e.g.,

```python
adjnufft_ob = adjnufft_ob.to(torch.device('cuda'))
kdata = kdata.to(torch.device('cuda'))
ktraj = ktraj.to(torch.device('cuda'))

image = adjnufft_ob(kdata, ktraj)
```

PyTorch will throw errors if the underlying ```dtype``` and ```device``` of all
objects are not matching. Be sure to make sure your data and NUFFT objects are
on the right device and in the right format to avoid these errors.

## Computation Speed

The following computation times in seconds were observed on a workstation with
a Xeon E5-2698 CPU and an Nvidia Quadro GP100 GPU for a 15-coil, 405-spoke 2D
radial problem. CPU computations were limited to 8 threads and done with 64-bit
floats, whereas GPU computations were done with 32-bit floats. The benchmark
used `torchkbnufft` version 1.0.0 and `torch` version 1.7.1.

(n) = normal, (spm) = sparse matrix, (toep) = Toeplitz embedding, (f/b) = forward/backward combined

| Operation      | CPU (n) | CPU (spm) | CPU (toep)  | GPU (n)  | GPU (spm) | GPU (toep)     |
| -------------- | -------:| ---------:| -----------:| --------:| ---------:| --------------:|
| Forward NUFFT  | 0.82    | 0.77      | 0.058 (f/b) | 2.58e-02 | 7.44e-02  | 3.03e-03 (f/b) |
| Adjoint NUFFT  | 0.75    | 0.76      | N/A         | 3.56e-02 | 7.93e-02  | N/A            |

Profiling for your machine can be done by running

```python
pip install -r dev-requirements.txt
python profile_torchkbnufft.py
```

## Other Packages

For users interested in NUFFT implementations for other computing platforms,
the following is a partial list of other projects:

1. [TF KB-NUFFT](https://github.com/zaccharieramzi/tfkbnufft) (KB-NUFFT for TensorFlow)
2. [SigPy](https://github.com/mikgroup/sigpy) (for Numpy arrays, Numba (for CPU) and CuPy (for GPU) backends)
3. [FINUFFT](https://github.com/flatironinstitute/finufft) (for MATLAB, Python, Julia, C, etc., very efficient)
4. [NFFT](https://github.com/NFFT/nfft) (for Julia)
5. [PyNUFFT](https://github.com/jyhmiinlin/pynufft) (for Numpy, also has PyCUDA/PyOpenCL backends)

## References

1. Fessler, J. A., & Sutton, B. P. (2003). [Nonuniform fast Fourier transforms using min-max interpolation](https://doi.org/10.1109/TSP.2002.807005). *IEEE Transactions on Signal Processing*, 51(2), 560-574.

2. Beatty, P. J., Nishimura, D. G., & Pauly, J. M. (2005). [Rapid gridding reconstruction with a minimal oversampling ratio](https://doi.org/10.1109/TMI.2005.848376). *IEEE Transactions on Medical Imaging*, 24(6), 799-808.

3. Feichtinger, H. G., Gr, K., & Strohmer, T. (1995). [Efficient numerical methods in non-uniform sampling theory](https://doi.org/10.1007/s002110050101). *Numerische Mathematik*, 69(4), 423-440.

## Citation

If you use the package, please cite:

```bibtex
@conference{muckley:20:tah,
  author = {M. J. Muckley and R. Stern and T. Murrell and F. Knoll},
  title = {{TorchKbNufft}: A High-Level, Hardware-Agnostic Non-Uniform Fast {Fourier} Transform},
  booktitle = {ISMRM Workshop on Data Sampling \& Image Reconstruction},
  year = 2020,
  note = {Source code available at https://github.com/mmuckley/torchkbnufft}.
}
```


%package -n python3-torchkbnufft
Summary:	A high-level, easy-to-deploy non-uniform Fast Fourier Transform in PyTorch.
Provides:	python-torchkbnufft
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-torchkbnufft
# torchkbnufft

[![LICENSE](https://img.shields.io/badge/license-MIT-blue.svg)](LICENSE)
![CI Badge](https://github.com/mmuckley/torchkbnufft/workflows/Build%20and%20test/badge.svg?branch=master) [![Documentation Status](https://readthedocs.org/projects/torchkbnufft/badge/?version=stable)](https://torchkbnufft.readthedocs.io/en/stable/?badge=latest) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Basic%20Example.ipynb)

[Documentation](https://torchkbnufft.readthedocs.io) | [GitHub](https://github.com/mmuckley/torchkbnufft) | [Notebook Examples](#examples)

Simple installation from PyPI:

```bash
pip install torchkbnufft
```

## About

`torchkbnufft` implements a non-uniform Fast Fourier Transform
[[1, 2](#references)] with Kaiser-Bessel gridding in PyTorch. The
implementation is completely in Python, facilitating flexible deployment in
readable code with no compilation. NUFFT functions are each wrapped as a
```torch.autograd.Function```, allowing backpropagation through NUFFT operators
for training neural networks.

This package was inspired in large part by the NUFFT implementation in the
[Michigan Image Reconstruction Toolbox (Matlab)](https://github.com/JeffFessler/mirt).

### Operation Modes and Stages

The package has three major classes of NUFFT operation mode: table-based NUFFT
interpolation, sparse matrix-based NUFFT interpolation, and forward/backward
operators with Toeplitz-embedded FFTs [[3](#references)]. Roughly, computation
speed follows:

| Type          | Speed                  |
| ------------- | ---------------------- |
| Toeplitz      | Fastest                |
| Table         | Medium                 |
| Sparse Matrix | Slow (not recommended) |

It is generally best to start with Table interpolation and then experiment with
the other modes for your problem.

Sensitivity maps can be incorporated by passing them into a `KbNufft` or
`KbNufftAdjoint` object.

## Documentation

An html-based documentation reference on
[Read the Docs](https://torchkbnufft.readthedocs.io).

Most files are accompanied with docstrings that can be read with ```help```
while running IPython. Example:

```python
from torchkbnufft import KbNufft

help(KbNufft)
```

## Examples

`torchkbnufft` can be used for N-D NUFFT transformations. The examples here
start with a simple 2D NUFFT, then expand it to SENSE (a task with multiple,
parallel 2D NUFFTs).

The last two examples demonstrate NUFFTs based on sparse matrix multiplications
(which can be useful for high-dimensional cases) and Toeplitz NUFFTs (which are
an extremely fast forward-backward NUFFT technique).

All examples have associated notebooks that you can run in Google Colab:

- [Basic Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Basic%20Example.ipynb)
- [SENSE-NUFFT Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/SENSE%20Example.ipynb)
- [Sparse Matrix Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Sparse%20Matrix%20Example.ipynb)
- [Toeplitz Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Toeplitz%20Example.ipynb)

### Simple Forward NUFFT

[Basic NUFFT Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Basic%20Example.ipynb)

The following code loads a Shepp-Logan phantom and computes a single radial
spoke of k-space data:

```python
import torch
import torchkbnufft as tkbn
import numpy as np
from skimage.data import shepp_logan_phantom

x = shepp_logan_phantom().astype(np.complex)
im_size = x.shape
# convert to tensor, unsqueeze batch and coil dimension
# output size: (1, 1, ny, nx)
x = torch.tensor(x).unsqueeze(0).unsqueeze(0).to(torch.complex64)

klength = 64
ktraj = np.stack(
    (np.zeros(64), np.linspace(-np.pi, np.pi, klength))
)
# convert to tensor, unsqueeze batch dimension
# output size: (2, klength)
ktraj = torch.tensor(ktraj, dtype=torch.float)

nufft_ob = tkbn.KbNufft(im_size=im_size)
# outputs a (1, 1, klength) vector of k-space data
kdata = nufft_ob(x, ktraj)
```

### SENSE-NUFFT

[SENSE-NUFFT Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/SENSE%20Example.ipynb)

The package also includes utilities for working with SENSE-NUFFT operators. The
above code can be modified to include sensitivity maps.

```python
smaps = torch.rand(1, 8, 400, 400) + 1j * torch.rand(1, 8, 400, 400)
sense_data = nufft_ob(x, ktraj, smaps=smaps.to(x))
```

This code first multiplies by the sensitivity coils in ```smaps```, then
computes a 64-length radial spoke for each coil. All operations are broadcast
across coils, which minimizes interaction with the Python interpreter, helping
computation speed.

### Sparse Matrix Precomputation

[Sparse Matrix Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Sparse%20Matrix%20Example.ipynb)

Sparse matrices are an alternative to table interpolation. Their speed can
vary, but they are a bit more accurate than standard table mode. The following
code calculates sparse interpolation matrices and uses them to compute a single
radial spoke of k-space data:

```python
adjnufft_ob = tkbn.KbNufftAdjoint(im_size=im_size)

# precompute the sparse interpolation matrices
interp_mats = tkbn.calc_tensor_spmatrix(
    ktraj,
    im_size=im_size
)

# use sparse matrices in adjoint
image = adjnufft_ob(kdata, ktraj, interp_mats)
```

Sparse matrix multiplication is only implemented for real numbers in PyTorch,
which can limit their speed.

### Toeplitz Embedding

[Toeplitz Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Toeplitz%20Example.ipynb)

The package includes routines for calculating embedded Toeplitz kernels and
using them as FFT filters for the forward/backward NUFFT operations
[[3](#references)]. This is very useful for gradient descent algorithms that
must use the forward/backward ops in calculating the gradient. The following
code shows an example:

```python
toep_ob = tkbn.ToepNufft()

# precompute the embedded Toeplitz FFT kernel
kernel = tkbn.calc_toeplitz_kernel(ktraj, im_size)

# use FFT kernel from embedded Toeplitz matrix
image = toep_ob(image, kernel)
```

### Running on the GPU

All of the examples included in this repository can be run on the GPU by
sending the NUFFT object and data to the GPU prior to the function call, e.g.,

```python
adjnufft_ob = adjnufft_ob.to(torch.device('cuda'))
kdata = kdata.to(torch.device('cuda'))
ktraj = ktraj.to(torch.device('cuda'))

image = adjnufft_ob(kdata, ktraj)
```

PyTorch will throw errors if the underlying ```dtype``` and ```device``` of all
objects are not matching. Be sure to make sure your data and NUFFT objects are
on the right device and in the right format to avoid these errors.

## Computation Speed

The following computation times in seconds were observed on a workstation with
a Xeon E5-2698 CPU and an Nvidia Quadro GP100 GPU for a 15-coil, 405-spoke 2D
radial problem. CPU computations were limited to 8 threads and done with 64-bit
floats, whereas GPU computations were done with 32-bit floats. The benchmark
used `torchkbnufft` version 1.0.0 and `torch` version 1.7.1.

(n) = normal, (spm) = sparse matrix, (toep) = Toeplitz embedding, (f/b) = forward/backward combined

| Operation      | CPU (n) | CPU (spm) | CPU (toep)  | GPU (n)  | GPU (spm) | GPU (toep)     |
| -------------- | -------:| ---------:| -----------:| --------:| ---------:| --------------:|
| Forward NUFFT  | 0.82    | 0.77      | 0.058 (f/b) | 2.58e-02 | 7.44e-02  | 3.03e-03 (f/b) |
| Adjoint NUFFT  | 0.75    | 0.76      | N/A         | 3.56e-02 | 7.93e-02  | N/A            |

Profiling for your machine can be done by running

```python
pip install -r dev-requirements.txt
python profile_torchkbnufft.py
```

## Other Packages

For users interested in NUFFT implementations for other computing platforms,
the following is a partial list of other projects:

1. [TF KB-NUFFT](https://github.com/zaccharieramzi/tfkbnufft) (KB-NUFFT for TensorFlow)
2. [SigPy](https://github.com/mikgroup/sigpy) (for Numpy arrays, Numba (for CPU) and CuPy (for GPU) backends)
3. [FINUFFT](https://github.com/flatironinstitute/finufft) (for MATLAB, Python, Julia, C, etc., very efficient)
4. [NFFT](https://github.com/NFFT/nfft) (for Julia)
5. [PyNUFFT](https://github.com/jyhmiinlin/pynufft) (for Numpy, also has PyCUDA/PyOpenCL backends)

## References

1. Fessler, J. A., & Sutton, B. P. (2003). [Nonuniform fast Fourier transforms using min-max interpolation](https://doi.org/10.1109/TSP.2002.807005). *IEEE Transactions on Signal Processing*, 51(2), 560-574.

2. Beatty, P. J., Nishimura, D. G., & Pauly, J. M. (2005). [Rapid gridding reconstruction with a minimal oversampling ratio](https://doi.org/10.1109/TMI.2005.848376). *IEEE Transactions on Medical Imaging*, 24(6), 799-808.

3. Feichtinger, H. G., Gr, K., & Strohmer, T. (1995). [Efficient numerical methods in non-uniform sampling theory](https://doi.org/10.1007/s002110050101). *Numerische Mathematik*, 69(4), 423-440.

## Citation

If you use the package, please cite:

```bibtex
@conference{muckley:20:tah,
  author = {M. J. Muckley and R. Stern and T. Murrell and F. Knoll},
  title = {{TorchKbNufft}: A High-Level, Hardware-Agnostic Non-Uniform Fast {Fourier} Transform},
  booktitle = {ISMRM Workshop on Data Sampling \& Image Reconstruction},
  year = 2020,
  note = {Source code available at https://github.com/mmuckley/torchkbnufft}.
}
```


%package help
Summary:	Development documents and examples for torchkbnufft
Provides:	python3-torchkbnufft-doc
%description help
# torchkbnufft

[![LICENSE](https://img.shields.io/badge/license-MIT-blue.svg)](LICENSE)
![CI Badge](https://github.com/mmuckley/torchkbnufft/workflows/Build%20and%20test/badge.svg?branch=master) [![Documentation Status](https://readthedocs.org/projects/torchkbnufft/badge/?version=stable)](https://torchkbnufft.readthedocs.io/en/stable/?badge=latest) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Basic%20Example.ipynb)

[Documentation](https://torchkbnufft.readthedocs.io) | [GitHub](https://github.com/mmuckley/torchkbnufft) | [Notebook Examples](#examples)

Simple installation from PyPI:

```bash
pip install torchkbnufft
```

## About

`torchkbnufft` implements a non-uniform Fast Fourier Transform
[[1, 2](#references)] with Kaiser-Bessel gridding in PyTorch. The
implementation is completely in Python, facilitating flexible deployment in
readable code with no compilation. NUFFT functions are each wrapped as a
```torch.autograd.Function```, allowing backpropagation through NUFFT operators
for training neural networks.

This package was inspired in large part by the NUFFT implementation in the
[Michigan Image Reconstruction Toolbox (Matlab)](https://github.com/JeffFessler/mirt).

### Operation Modes and Stages

The package has three major classes of NUFFT operation mode: table-based NUFFT
interpolation, sparse matrix-based NUFFT interpolation, and forward/backward
operators with Toeplitz-embedded FFTs [[3](#references)]. Roughly, computation
speed follows:

| Type          | Speed                  |
| ------------- | ---------------------- |
| Toeplitz      | Fastest                |
| Table         | Medium                 |
| Sparse Matrix | Slow (not recommended) |

It is generally best to start with Table interpolation and then experiment with
the other modes for your problem.

Sensitivity maps can be incorporated by passing them into a `KbNufft` or
`KbNufftAdjoint` object.

## Documentation

An html-based documentation reference on
[Read the Docs](https://torchkbnufft.readthedocs.io).

Most files are accompanied with docstrings that can be read with ```help```
while running IPython. Example:

```python
from torchkbnufft import KbNufft

help(KbNufft)
```

## Examples

`torchkbnufft` can be used for N-D NUFFT transformations. The examples here
start with a simple 2D NUFFT, then expand it to SENSE (a task with multiple,
parallel 2D NUFFTs).

The last two examples demonstrate NUFFTs based on sparse matrix multiplications
(which can be useful for high-dimensional cases) and Toeplitz NUFFTs (which are
an extremely fast forward-backward NUFFT technique).

All examples have associated notebooks that you can run in Google Colab:

- [Basic Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Basic%20Example.ipynb)
- [SENSE-NUFFT Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/SENSE%20Example.ipynb)
- [Sparse Matrix Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Sparse%20Matrix%20Example.ipynb)
- [Toeplitz Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Toeplitz%20Example.ipynb)

### Simple Forward NUFFT

[Basic NUFFT Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Basic%20Example.ipynb)

The following code loads a Shepp-Logan phantom and computes a single radial
spoke of k-space data:

```python
import torch
import torchkbnufft as tkbn
import numpy as np
from skimage.data import shepp_logan_phantom

x = shepp_logan_phantom().astype(np.complex)
im_size = x.shape
# convert to tensor, unsqueeze batch and coil dimension
# output size: (1, 1, ny, nx)
x = torch.tensor(x).unsqueeze(0).unsqueeze(0).to(torch.complex64)

klength = 64
ktraj = np.stack(
    (np.zeros(64), np.linspace(-np.pi, np.pi, klength))
)
# convert to tensor, unsqueeze batch dimension
# output size: (2, klength)
ktraj = torch.tensor(ktraj, dtype=torch.float)

nufft_ob = tkbn.KbNufft(im_size=im_size)
# outputs a (1, 1, klength) vector of k-space data
kdata = nufft_ob(x, ktraj)
```

### SENSE-NUFFT

[SENSE-NUFFT Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/SENSE%20Example.ipynb)

The package also includes utilities for working with SENSE-NUFFT operators. The
above code can be modified to include sensitivity maps.

```python
smaps = torch.rand(1, 8, 400, 400) + 1j * torch.rand(1, 8, 400, 400)
sense_data = nufft_ob(x, ktraj, smaps=smaps.to(x))
```

This code first multiplies by the sensitivity coils in ```smaps```, then
computes a 64-length radial spoke for each coil. All operations are broadcast
across coils, which minimizes interaction with the Python interpreter, helping
computation speed.

### Sparse Matrix Precomputation

[Sparse Matrix Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Sparse%20Matrix%20Example.ipynb)

Sparse matrices are an alternative to table interpolation. Their speed can
vary, but they are a bit more accurate than standard table mode. The following
code calculates sparse interpolation matrices and uses them to compute a single
radial spoke of k-space data:

```python
adjnufft_ob = tkbn.KbNufftAdjoint(im_size=im_size)

# precompute the sparse interpolation matrices
interp_mats = tkbn.calc_tensor_spmatrix(
    ktraj,
    im_size=im_size
)

# use sparse matrices in adjoint
image = adjnufft_ob(kdata, ktraj, interp_mats)
```

Sparse matrix multiplication is only implemented for real numbers in PyTorch,
which can limit their speed.

### Toeplitz Embedding

[Toeplitz Example in Colab](https://colab.research.google.com/github/mmuckley/torchkbnufft/blob/main/notebooks/Toeplitz%20Example.ipynb)

The package includes routines for calculating embedded Toeplitz kernels and
using them as FFT filters for the forward/backward NUFFT operations
[[3](#references)]. This is very useful for gradient descent algorithms that
must use the forward/backward ops in calculating the gradient. The following
code shows an example:

```python
toep_ob = tkbn.ToepNufft()

# precompute the embedded Toeplitz FFT kernel
kernel = tkbn.calc_toeplitz_kernel(ktraj, im_size)

# use FFT kernel from embedded Toeplitz matrix
image = toep_ob(image, kernel)
```

### Running on the GPU

All of the examples included in this repository can be run on the GPU by
sending the NUFFT object and data to the GPU prior to the function call, e.g.,

```python
adjnufft_ob = adjnufft_ob.to(torch.device('cuda'))
kdata = kdata.to(torch.device('cuda'))
ktraj = ktraj.to(torch.device('cuda'))

image = adjnufft_ob(kdata, ktraj)
```

PyTorch will throw errors if the underlying ```dtype``` and ```device``` of all
objects are not matching. Be sure to make sure your data and NUFFT objects are
on the right device and in the right format to avoid these errors.

## Computation Speed

The following computation times in seconds were observed on a workstation with
a Xeon E5-2698 CPU and an Nvidia Quadro GP100 GPU for a 15-coil, 405-spoke 2D
radial problem. CPU computations were limited to 8 threads and done with 64-bit
floats, whereas GPU computations were done with 32-bit floats. The benchmark
used `torchkbnufft` version 1.0.0 and `torch` version 1.7.1.

(n) = normal, (spm) = sparse matrix, (toep) = Toeplitz embedding, (f/b) = forward/backward combined

| Operation      | CPU (n) | CPU (spm) | CPU (toep)  | GPU (n)  | GPU (spm) | GPU (toep)     |
| -------------- | -------:| ---------:| -----------:| --------:| ---------:| --------------:|
| Forward NUFFT  | 0.82    | 0.77      | 0.058 (f/b) | 2.58e-02 | 7.44e-02  | 3.03e-03 (f/b) |
| Adjoint NUFFT  | 0.75    | 0.76      | N/A         | 3.56e-02 | 7.93e-02  | N/A            |

Profiling for your machine can be done by running

```python
pip install -r dev-requirements.txt
python profile_torchkbnufft.py
```

## Other Packages

For users interested in NUFFT implementations for other computing platforms,
the following is a partial list of other projects:

1. [TF KB-NUFFT](https://github.com/zaccharieramzi/tfkbnufft) (KB-NUFFT for TensorFlow)
2. [SigPy](https://github.com/mikgroup/sigpy) (for Numpy arrays, Numba (for CPU) and CuPy (for GPU) backends)
3. [FINUFFT](https://github.com/flatironinstitute/finufft) (for MATLAB, Python, Julia, C, etc., very efficient)
4. [NFFT](https://github.com/NFFT/nfft) (for Julia)
5. [PyNUFFT](https://github.com/jyhmiinlin/pynufft) (for Numpy, also has PyCUDA/PyOpenCL backends)

## References

1. Fessler, J. A., & Sutton, B. P. (2003). [Nonuniform fast Fourier transforms using min-max interpolation](https://doi.org/10.1109/TSP.2002.807005). *IEEE Transactions on Signal Processing*, 51(2), 560-574.

2. Beatty, P. J., Nishimura, D. G., & Pauly, J. M. (2005). [Rapid gridding reconstruction with a minimal oversampling ratio](https://doi.org/10.1109/TMI.2005.848376). *IEEE Transactions on Medical Imaging*, 24(6), 799-808.

3. Feichtinger, H. G., Gr, K., & Strohmer, T. (1995). [Efficient numerical methods in non-uniform sampling theory](https://doi.org/10.1007/s002110050101). *Numerische Mathematik*, 69(4), 423-440.

## Citation

If you use the package, please cite:

```bibtex
@conference{muckley:20:tah,
  author = {M. J. Muckley and R. Stern and T. Murrell and F. Knoll},
  title = {{TorchKbNufft}: A High-Level, Hardware-Agnostic Non-Uniform Fast {Fourier} Transform},
  booktitle = {ISMRM Workshop on Data Sampling \& Image Reconstruction},
  year = 2020,
  note = {Source code available at https://github.com/mmuckley/torchkbnufft}.
}
```


%prep
%autosetup -n torchkbnufft-1.4.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-torchkbnufft -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 1.4.0-1
- Package Spec generated