1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
%global _empty_manifest_terminate_build 0
Name: python-torchlambda
Version: 1602697918
Release: 1
Summary: Minimalistic & easy deployment of PyTorch models on AWS Lambda with C++
License: MIT
URL: https://github.com/pypa/torchlambda
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/99/1c/c945e1f4e8c31399c222eabf034ea399258ac6dcd946d8e06235704e88d5/torchlambda-1602697918.tar.gz
BuildArch: noarch
Requires: python3-PyYAML
Requires: python3-Cerberus
%description
<img align="left" width="256" height="256" src="https://github.com/szymonmaszke/torchlambda/blob/master/assets/banner.png">
[__torchlambda__](https://github.com/szymonmaszke/torchlambda/wiki) is a tool to deploy [PyTorch](https://pytorch.org/) models
on [Amazon's AWS Lambda](https://aws.amazon.com/lambda/) using [AWS SDK for C++](https://aws.amazon.com/sdk-for-cpp/)
and [custom C++ runtime](https://github.com/awslabs/aws-lambda-cpp).
Using statically compiled dependencies __whole package is shrunk to only `30MB`__.
Due to small size of compiled source code users can pass their models as [AWS Lambda layers](https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html).
__Services like [Amazon S3](https://aws.amazon.com/s3/) are no longer necessary to load your model__.
[__torchlambda__](https://github.com/szymonmaszke/torchlambda/wiki) has it's PyTorch & AWS dependencies always tested & up to date because of daily [continuous deployment](https://en.wikipedia.org/wiki/Continuous_deployment) runs.
| Docs | Deployment | Package | Python | PyTorch | Docker | CodeBeat | Images |
|------|------------|---------|--------|---------|--------|----------|--------|
|[](https://github.com/szymonmaszke/torchlambda/wiki) |  | [](https://pypi.org/project/torchlambda/) | [](https://www.python.org/) | [](https://pytorch.org/) | [](https://cloud.docker.com/u/szymonmaszke/repository/docker/szymonmaszke/torchlambda) | [](https://codebeat.co/projects/github-com-szymonmaszke-torchlambda-master) | [](https://hub.docker.com/r/szymonmaszke/torchlambda/tags)|
## :heavy_check_mark: Why should I use `torchlambda`?
- __Lightweight & latest dependencies__ - compiled source code weights only `30MB`. Previous approach to PyTorch network deployment on AWS Lambda ([fastai](https://course.fast.ai/deployment_aws_lambda.html)) uses outdated PyTorch (`1.1.0`) as dependency layer and requires AWS S3 to host your model. Now you can only use AWS Lambda and host your model as layer and PyTorch `master` and latest stable release are supported on a daily basis.
- __Cheaper and less resource hungry__ - available solutions run server hosting incoming requests all the time. AWS Lambda (and torchlambda) runs only when the request comes.
- __Easy automated scaling__ usually autoscaling is done with [Kubernetes](https://kubernetes.io/) or similar tools (see [KubeFlow](https://www.kubeflow.org/docs/gke/deploy/)). This approach requires knowledge of another tool, setting up appropriate services (e.g. [Amazon EKS](https://aws.amazon.com/eks/)). In AWS Lambda case you just push your neural network inference code and you are done.
- __Easy to use__ - no need to learn new tool. `torchlambda` has at most
`4` commands and deployment is done via [YAML](https://yaml.org/) settings. No need to modify your PyTorch code.
- __Do one thing and do it well__ - most deployment tools are complex solutions
including multiple frameworks and multiple services. `torchlambda` focuses
solely on inference of PyTorch models on AWS Lambda.
- __Write programs to work together__ - This tool does not repeat PyTorch & AWS's functionalities (like `aws-cli`). You can also use your favorite third party tools (say [saws](https://github.com/donnemartin/saws), [Terraform](https://www.terraform.io/) with AWS and [MLFlow](https://www.mlflow.org/docs/latest/index.html), [PyTorch-Lightning](https://github.com/PyTorchLightning/pytorch-lightning) to train your model).
- __Test locally, run in the cloud__ - `torchlambda` uses [Amazon Linux 2](https://aws.amazon.com/amazon-linux-2/) Docker [images](https://hub.docker.com/_/amazonlinux) under the hood & allows you to use [lambci/docker-lambda](https://github.com/lambci/docker-lambda) to test your deployment on `localhost` before pushing deployment to the cloud (see [Test Lambda deployment locally](https://github.com/szymonmaszke/torchlambda/wiki/Test-Lambda-deployment-locally) tutorial).
- __Extensible when you need it__ - All you usually need are a few lines of YAML settings, but if you wish to fine-tune your deployment you can use `torchlambda build` `--flags` (changing various properties of PyTorch and AWS dependencies themselves). You can also write your own C++ deployment code (generate template via `torchlambda template` command).
- __Small is beautiful__ - `3000` LOC (most being convenience wrapper creating this tool)
make it easy to jump into source code and check what's going on under the hood.
# :house: Table Of Contents
- [Installation](https://github.com/szymonmaszke/torchlambda/wiki/Installation)
- [Tutorials](https://github.com/szymonmaszke/torchlambda/wiki/Tutorials)
- [ResNet18 deployment on AWS Lambda](https://github.com/szymonmaszke/torchlambda/wiki/ResNet18-deployment-on-AWS-Lambda)
- [Test Lambda deployment locally](https://github.com/szymonmaszke/torchlambda/wiki/Test-Lambda-deployment-locally)
- [`base64` image encoding](https://github.com/szymonmaszke/torchlambda/wiki/base64-image-encoding)
- [Commands](https://github.com/szymonmaszke/torchlambda/wiki/Commands)
- [settings](https://github.com/szymonmaszke/torchlambda/wiki/Commands#torchlambda-settings)
- [template](https://github.com/szymonmaszke/torchlambda/wiki/Commands#torchlambda-template)
- [build](https://github.com/szymonmaszke/torchlambda/wiki/Commands#torchlambda-build)
- [layer](https://github.com/szymonmaszke/torchlambda/wiki/Commands#torchlambda-layer)
- [YAML settings file reference](https://github.com/szymonmaszke/torchlambda/wiki/YAML-settings-file-reference)
- [C++ code](https://github.com/szymonmaszke/torchlambda/wiki/CPP---code)
## :page_with_curl: Benchmarks
Benchmarks can be seen in [`BENCHMARKS.md`](https://github.com/szymonmaszke/torchlambda/blob/master/BENCHMARKS.md) file and are comprised of around ~30000 test cases.
Results are divided based on settings used, model type, payload, AWS Lambda timing etc. Below is an example of how inference performance changes due to higher resolution images and type of encoding:
| | 128x128 | 256x256 | 512x512 | 1024x1024 |
|:-------|----------:|----------:|----------:|------------:|
| base64 | 120.622 | 165.184 | 311.129 | 995.249 |
| byte | 133.315 | 203.628 | 498.391 | 1738.97 |
| char | 128.331 | 209.306 | 517.482 | 1822.56 |
| short | 135.859 | 207.389 | 497.818 | 1740.91 |
| int | 133.42 | 216.163 | 519.502 | 1783.02 |
| long | 126.979 | 228.497 | 516.98 | 1760.93 |
| float | 135.825 | 223.045 | 515.245 | 1802.25 |
| double | 137.281 | 209.267 | 536.959 | 1811.83 |
Clearly the bigger image, the more important it is to use `base64` encoding. For all results and description [click here](https://github.com/szymonmaszke/torchlambda/blob/master/BENCHMARKS.md).
## :question: Contributing
If you find an issue or you think some functionality may be useful to you, please [open new Issue](https://help.github.com/en/articles/creating-an-issue) or [create Pull Request](https://help.github.com/en/articles/creating-a-pull-request-from-a-fork) with your changes, thanks!
%package -n python3-torchlambda
Summary: Minimalistic & easy deployment of PyTorch models on AWS Lambda with C++
Provides: python-torchlambda
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-torchlambda
<img align="left" width="256" height="256" src="https://github.com/szymonmaszke/torchlambda/blob/master/assets/banner.png">
[__torchlambda__](https://github.com/szymonmaszke/torchlambda/wiki) is a tool to deploy [PyTorch](https://pytorch.org/) models
on [Amazon's AWS Lambda](https://aws.amazon.com/lambda/) using [AWS SDK for C++](https://aws.amazon.com/sdk-for-cpp/)
and [custom C++ runtime](https://github.com/awslabs/aws-lambda-cpp).
Using statically compiled dependencies __whole package is shrunk to only `30MB`__.
Due to small size of compiled source code users can pass their models as [AWS Lambda layers](https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html).
__Services like [Amazon S3](https://aws.amazon.com/s3/) are no longer necessary to load your model__.
[__torchlambda__](https://github.com/szymonmaszke/torchlambda/wiki) has it's PyTorch & AWS dependencies always tested & up to date because of daily [continuous deployment](https://en.wikipedia.org/wiki/Continuous_deployment) runs.
| Docs | Deployment | Package | Python | PyTorch | Docker | CodeBeat | Images |
|------|------------|---------|--------|---------|--------|----------|--------|
|[](https://github.com/szymonmaszke/torchlambda/wiki) |  | [](https://pypi.org/project/torchlambda/) | [](https://www.python.org/) | [](https://pytorch.org/) | [](https://cloud.docker.com/u/szymonmaszke/repository/docker/szymonmaszke/torchlambda) | [](https://codebeat.co/projects/github-com-szymonmaszke-torchlambda-master) | [](https://hub.docker.com/r/szymonmaszke/torchlambda/tags)|
## :heavy_check_mark: Why should I use `torchlambda`?
- __Lightweight & latest dependencies__ - compiled source code weights only `30MB`. Previous approach to PyTorch network deployment on AWS Lambda ([fastai](https://course.fast.ai/deployment_aws_lambda.html)) uses outdated PyTorch (`1.1.0`) as dependency layer and requires AWS S3 to host your model. Now you can only use AWS Lambda and host your model as layer and PyTorch `master` and latest stable release are supported on a daily basis.
- __Cheaper and less resource hungry__ - available solutions run server hosting incoming requests all the time. AWS Lambda (and torchlambda) runs only when the request comes.
- __Easy automated scaling__ usually autoscaling is done with [Kubernetes](https://kubernetes.io/) or similar tools (see [KubeFlow](https://www.kubeflow.org/docs/gke/deploy/)). This approach requires knowledge of another tool, setting up appropriate services (e.g. [Amazon EKS](https://aws.amazon.com/eks/)). In AWS Lambda case you just push your neural network inference code and you are done.
- __Easy to use__ - no need to learn new tool. `torchlambda` has at most
`4` commands and deployment is done via [YAML](https://yaml.org/) settings. No need to modify your PyTorch code.
- __Do one thing and do it well__ - most deployment tools are complex solutions
including multiple frameworks and multiple services. `torchlambda` focuses
solely on inference of PyTorch models on AWS Lambda.
- __Write programs to work together__ - This tool does not repeat PyTorch & AWS's functionalities (like `aws-cli`). You can also use your favorite third party tools (say [saws](https://github.com/donnemartin/saws), [Terraform](https://www.terraform.io/) with AWS and [MLFlow](https://www.mlflow.org/docs/latest/index.html), [PyTorch-Lightning](https://github.com/PyTorchLightning/pytorch-lightning) to train your model).
- __Test locally, run in the cloud__ - `torchlambda` uses [Amazon Linux 2](https://aws.amazon.com/amazon-linux-2/) Docker [images](https://hub.docker.com/_/amazonlinux) under the hood & allows you to use [lambci/docker-lambda](https://github.com/lambci/docker-lambda) to test your deployment on `localhost` before pushing deployment to the cloud (see [Test Lambda deployment locally](https://github.com/szymonmaszke/torchlambda/wiki/Test-Lambda-deployment-locally) tutorial).
- __Extensible when you need it__ - All you usually need are a few lines of YAML settings, but if you wish to fine-tune your deployment you can use `torchlambda build` `--flags` (changing various properties of PyTorch and AWS dependencies themselves). You can also write your own C++ deployment code (generate template via `torchlambda template` command).
- __Small is beautiful__ - `3000` LOC (most being convenience wrapper creating this tool)
make it easy to jump into source code and check what's going on under the hood.
# :house: Table Of Contents
- [Installation](https://github.com/szymonmaszke/torchlambda/wiki/Installation)
- [Tutorials](https://github.com/szymonmaszke/torchlambda/wiki/Tutorials)
- [ResNet18 deployment on AWS Lambda](https://github.com/szymonmaszke/torchlambda/wiki/ResNet18-deployment-on-AWS-Lambda)
- [Test Lambda deployment locally](https://github.com/szymonmaszke/torchlambda/wiki/Test-Lambda-deployment-locally)
- [`base64` image encoding](https://github.com/szymonmaszke/torchlambda/wiki/base64-image-encoding)
- [Commands](https://github.com/szymonmaszke/torchlambda/wiki/Commands)
- [settings](https://github.com/szymonmaszke/torchlambda/wiki/Commands#torchlambda-settings)
- [template](https://github.com/szymonmaszke/torchlambda/wiki/Commands#torchlambda-template)
- [build](https://github.com/szymonmaszke/torchlambda/wiki/Commands#torchlambda-build)
- [layer](https://github.com/szymonmaszke/torchlambda/wiki/Commands#torchlambda-layer)
- [YAML settings file reference](https://github.com/szymonmaszke/torchlambda/wiki/YAML-settings-file-reference)
- [C++ code](https://github.com/szymonmaszke/torchlambda/wiki/CPP---code)
## :page_with_curl: Benchmarks
Benchmarks can be seen in [`BENCHMARKS.md`](https://github.com/szymonmaszke/torchlambda/blob/master/BENCHMARKS.md) file and are comprised of around ~30000 test cases.
Results are divided based on settings used, model type, payload, AWS Lambda timing etc. Below is an example of how inference performance changes due to higher resolution images and type of encoding:
| | 128x128 | 256x256 | 512x512 | 1024x1024 |
|:-------|----------:|----------:|----------:|------------:|
| base64 | 120.622 | 165.184 | 311.129 | 995.249 |
| byte | 133.315 | 203.628 | 498.391 | 1738.97 |
| char | 128.331 | 209.306 | 517.482 | 1822.56 |
| short | 135.859 | 207.389 | 497.818 | 1740.91 |
| int | 133.42 | 216.163 | 519.502 | 1783.02 |
| long | 126.979 | 228.497 | 516.98 | 1760.93 |
| float | 135.825 | 223.045 | 515.245 | 1802.25 |
| double | 137.281 | 209.267 | 536.959 | 1811.83 |
Clearly the bigger image, the more important it is to use `base64` encoding. For all results and description [click here](https://github.com/szymonmaszke/torchlambda/blob/master/BENCHMARKS.md).
## :question: Contributing
If you find an issue or you think some functionality may be useful to you, please [open new Issue](https://help.github.com/en/articles/creating-an-issue) or [create Pull Request](https://help.github.com/en/articles/creating-a-pull-request-from-a-fork) with your changes, thanks!
%package help
Summary: Development documents and examples for torchlambda
Provides: python3-torchlambda-doc
%description help
<img align="left" width="256" height="256" src="https://github.com/szymonmaszke/torchlambda/blob/master/assets/banner.png">
[__torchlambda__](https://github.com/szymonmaszke/torchlambda/wiki) is a tool to deploy [PyTorch](https://pytorch.org/) models
on [Amazon's AWS Lambda](https://aws.amazon.com/lambda/) using [AWS SDK for C++](https://aws.amazon.com/sdk-for-cpp/)
and [custom C++ runtime](https://github.com/awslabs/aws-lambda-cpp).
Using statically compiled dependencies __whole package is shrunk to only `30MB`__.
Due to small size of compiled source code users can pass their models as [AWS Lambda layers](https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html).
__Services like [Amazon S3](https://aws.amazon.com/s3/) are no longer necessary to load your model__.
[__torchlambda__](https://github.com/szymonmaszke/torchlambda/wiki) has it's PyTorch & AWS dependencies always tested & up to date because of daily [continuous deployment](https://en.wikipedia.org/wiki/Continuous_deployment) runs.
| Docs | Deployment | Package | Python | PyTorch | Docker | CodeBeat | Images |
|------|------------|---------|--------|---------|--------|----------|--------|
|[](https://github.com/szymonmaszke/torchlambda/wiki) |  | [](https://pypi.org/project/torchlambda/) | [](https://www.python.org/) | [](https://pytorch.org/) | [](https://cloud.docker.com/u/szymonmaszke/repository/docker/szymonmaszke/torchlambda) | [](https://codebeat.co/projects/github-com-szymonmaszke-torchlambda-master) | [](https://hub.docker.com/r/szymonmaszke/torchlambda/tags)|
## :heavy_check_mark: Why should I use `torchlambda`?
- __Lightweight & latest dependencies__ - compiled source code weights only `30MB`. Previous approach to PyTorch network deployment on AWS Lambda ([fastai](https://course.fast.ai/deployment_aws_lambda.html)) uses outdated PyTorch (`1.1.0`) as dependency layer and requires AWS S3 to host your model. Now you can only use AWS Lambda and host your model as layer and PyTorch `master` and latest stable release are supported on a daily basis.
- __Cheaper and less resource hungry__ - available solutions run server hosting incoming requests all the time. AWS Lambda (and torchlambda) runs only when the request comes.
- __Easy automated scaling__ usually autoscaling is done with [Kubernetes](https://kubernetes.io/) or similar tools (see [KubeFlow](https://www.kubeflow.org/docs/gke/deploy/)). This approach requires knowledge of another tool, setting up appropriate services (e.g. [Amazon EKS](https://aws.amazon.com/eks/)). In AWS Lambda case you just push your neural network inference code and you are done.
- __Easy to use__ - no need to learn new tool. `torchlambda` has at most
`4` commands and deployment is done via [YAML](https://yaml.org/) settings. No need to modify your PyTorch code.
- __Do one thing and do it well__ - most deployment tools are complex solutions
including multiple frameworks and multiple services. `torchlambda` focuses
solely on inference of PyTorch models on AWS Lambda.
- __Write programs to work together__ - This tool does not repeat PyTorch & AWS's functionalities (like `aws-cli`). You can also use your favorite third party tools (say [saws](https://github.com/donnemartin/saws), [Terraform](https://www.terraform.io/) with AWS and [MLFlow](https://www.mlflow.org/docs/latest/index.html), [PyTorch-Lightning](https://github.com/PyTorchLightning/pytorch-lightning) to train your model).
- __Test locally, run in the cloud__ - `torchlambda` uses [Amazon Linux 2](https://aws.amazon.com/amazon-linux-2/) Docker [images](https://hub.docker.com/_/amazonlinux) under the hood & allows you to use [lambci/docker-lambda](https://github.com/lambci/docker-lambda) to test your deployment on `localhost` before pushing deployment to the cloud (see [Test Lambda deployment locally](https://github.com/szymonmaszke/torchlambda/wiki/Test-Lambda-deployment-locally) tutorial).
- __Extensible when you need it__ - All you usually need are a few lines of YAML settings, but if you wish to fine-tune your deployment you can use `torchlambda build` `--flags` (changing various properties of PyTorch and AWS dependencies themselves). You can also write your own C++ deployment code (generate template via `torchlambda template` command).
- __Small is beautiful__ - `3000` LOC (most being convenience wrapper creating this tool)
make it easy to jump into source code and check what's going on under the hood.
# :house: Table Of Contents
- [Installation](https://github.com/szymonmaszke/torchlambda/wiki/Installation)
- [Tutorials](https://github.com/szymonmaszke/torchlambda/wiki/Tutorials)
- [ResNet18 deployment on AWS Lambda](https://github.com/szymonmaszke/torchlambda/wiki/ResNet18-deployment-on-AWS-Lambda)
- [Test Lambda deployment locally](https://github.com/szymonmaszke/torchlambda/wiki/Test-Lambda-deployment-locally)
- [`base64` image encoding](https://github.com/szymonmaszke/torchlambda/wiki/base64-image-encoding)
- [Commands](https://github.com/szymonmaszke/torchlambda/wiki/Commands)
- [settings](https://github.com/szymonmaszke/torchlambda/wiki/Commands#torchlambda-settings)
- [template](https://github.com/szymonmaszke/torchlambda/wiki/Commands#torchlambda-template)
- [build](https://github.com/szymonmaszke/torchlambda/wiki/Commands#torchlambda-build)
- [layer](https://github.com/szymonmaszke/torchlambda/wiki/Commands#torchlambda-layer)
- [YAML settings file reference](https://github.com/szymonmaszke/torchlambda/wiki/YAML-settings-file-reference)
- [C++ code](https://github.com/szymonmaszke/torchlambda/wiki/CPP---code)
## :page_with_curl: Benchmarks
Benchmarks can be seen in [`BENCHMARKS.md`](https://github.com/szymonmaszke/torchlambda/blob/master/BENCHMARKS.md) file and are comprised of around ~30000 test cases.
Results are divided based on settings used, model type, payload, AWS Lambda timing etc. Below is an example of how inference performance changes due to higher resolution images and type of encoding:
| | 128x128 | 256x256 | 512x512 | 1024x1024 |
|:-------|----------:|----------:|----------:|------------:|
| base64 | 120.622 | 165.184 | 311.129 | 995.249 |
| byte | 133.315 | 203.628 | 498.391 | 1738.97 |
| char | 128.331 | 209.306 | 517.482 | 1822.56 |
| short | 135.859 | 207.389 | 497.818 | 1740.91 |
| int | 133.42 | 216.163 | 519.502 | 1783.02 |
| long | 126.979 | 228.497 | 516.98 | 1760.93 |
| float | 135.825 | 223.045 | 515.245 | 1802.25 |
| double | 137.281 | 209.267 | 536.959 | 1811.83 |
Clearly the bigger image, the more important it is to use `base64` encoding. For all results and description [click here](https://github.com/szymonmaszke/torchlambda/blob/master/BENCHMARKS.md).
## :question: Contributing
If you find an issue or you think some functionality may be useful to you, please [open new Issue](https://help.github.com/en/articles/creating-an-issue) or [create Pull Request](https://help.github.com/en/articles/creating-a-pull-request-from-a-fork) with your changes, thanks!
%prep
%autosetup -n torchlambda-1602697918
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-torchlambda -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 1602697918-1
- Package Spec generated
|