summaryrefslogtreecommitdiff
path: root/python-torchlayers-nightly.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-torchlayers-nightly.spec')
-rw-r--r--python-torchlayers-nightly.spec766
1 files changed, 766 insertions, 0 deletions
diff --git a/python-torchlayers-nightly.spec b/python-torchlayers-nightly.spec
new file mode 100644
index 0000000..eb76365
--- /dev/null
+++ b/python-torchlayers-nightly.spec
@@ -0,0 +1,766 @@
+%global _empty_manifest_terminate_build 0
+Name: python-torchlayers-nightly
+Version: 1681171628
+Release: 1
+Summary: Input shape inference and SOTA custom layers for PyTorch.
+License: MIT
+URL: https://github.com/pypa/torchlayers
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/f0/36/65b339c5b9cafbb957cc5663454075369fdd9ec99f2d5fbfaf99ad2811c2/torchlayers-nightly-1681171628.tar.gz
+BuildArch: noarch
+
+Requires: python3-torch
+
+%description
+| Version | Docs | Tests | Coverage | Style | PyPI | Python | PyTorch | Docker |
+|---------|------|-------|----------|-------|------|--------|---------|--------|
+| [![Version](https://img.shields.io/static/v1?label=&message=0.1.1&color=377EF0&style=for-the-badge)](https://github.com/szymonmaszke/torchlayers/releases) | [![Documentation](https://img.shields.io/static/v1?label=&message=docs&color=EE4C2C&style=for-the-badge)](https://szymonmaszke.github.io/torchlayers/) | ![Tests](https://img.shields.io/github/workflow/status/szymonmaszke/torchlayers/test?label=%20&style=for-the-badge) | [![codecov](https://codecov.io/gh/szymonmaszke/torchlayers/branch/master/graph/badge.svg?token=GbZmdqbTWM)](https://codecov.io/gh/szymonmaszke/torchlayers) | [![codebeat badge](https://codebeat.co/badges/0e3d33b0-95a4-429c-8692-881a4ffeac6b)](https://codebeat.co/projects/github-com-szymonmaszke-torchlayers-master) | [![PyPI](https://img.shields.io/static/v1?label=&message=PyPI&color=377EF0&style=for-the-badge)](https://pypi.org/project/torchlayers/) | [![Python](https://img.shields.io/static/v1?label=&message=>=3.7&color=377EF0&style=for-the-badge&logo=python&logoColor=F8C63D)](https://www.python.org/) | [![PyTorch](https://img.shields.io/static/v1?label=&message=>=1.3.0&color=EE4C2C&style=for-the-badge)](https://pytorch.org/) | [![Docker](https://img.shields.io/static/v1?label=&message=docker&color=309cef&style=for-the-badge)](https://hub.docker.com/r/szymonmaszke/torchlayers) |
+[__torchlayers__](https://szymonmaszke.github.io/torchlayers/) is a library based on [__PyTorch__](https://pytorch.org/)
+providing __automatic shape and dimensionality inference of `torch.nn` layers__ + additional
+building blocks featured in current SOTA architectures (e.g. [Efficient-Net](https://arxiv.org/abs/1905.11946)).
+Above requires no user intervention (except single call to `torchlayers.build`)
+similarly to the one seen in [__Keras__](https://www.tensorflow.org/guide/keras).
+### Main functionalities:
+* __Shape inference__ for most of `torch.nn` module (__convolutional, recurrent, transformer, attention and linear layers__)
+* __Dimensionality inference__ (e.g. `torchlayers.Conv` working as `torch.nn.Conv1d/2d/3d` based on `input shape`)
+* __Shape inference of custom modules__ (see examples section)
+* __Additional [Keras-like](https://www.tensorflow.org/guide/keras) layers__ (e.g. `torchlayers.Reshape` or `torchlayers.StandardNormalNoise`)
+* __Additional SOTA layers__ mostly from ImageNet competitions
+(e.g. [PolyNet](https://arxiv.org/abs/1608.06993),
+[Squeeze-And-Excitation](https://arxiv.org/abs/1709.01507),
+[StochasticDepth](www.arxiv.org/abs/1512.03385>))
+* __Useful defaults__ (`"same"` padding and default `kernel_size=3` for `Conv`, dropout rates etc.)
+* __Zero overhead and [torchscript](https://pytorch.org/docs/stable/jit.html) support__
+__Keep in mind this library works almost exactly like PyTorch originally__.
+What that means is you can use `Sequential`, __define your own networks of any complexity using
+`torch.nn.Module`__, create new layers with shape inference etc.
+_See below to get some intuition about library_.
+# Examples
+For full functionality please check [__torchlayers documentation__](https://szymonmaszke.github.io/torchlayers/).
+Below examples should introduce all necessary concepts you should know.
+## Basic classifier
+__All__ `torch.nn` modules can be used through `torchlayers` and __each module with input shape__
+will be appropriately modified with it's input inferable counterpart.
+```python
+import torchlayers as tl
+class Classifier(tl.Module):
+ def __init__(self):
+ super().__init__()
+ self.conv1 = tl.Conv2d(64, kernel_size=6)
+ self.conv2 = tl.Conv2d(128, kernel_size=3)
+ self.conv3 = tl.Conv2d(256, kernel_size=3, padding=1)
+ # New layer, more on that in the next example
+ self.pooling = tl.GlobalMaxPool()
+ self.dense = tl.Linear(10)
+ def forward(self, x):
+ x = torch.relu(self.conv1(x))
+ x = torch.relu(self.conv2(x))
+ x = torch.relu(self.conv3(x))
+ return self.dense(self.pooling(x))
+# Pass model and any example inputs afterwards
+clf = tl.build(Classifier(), torch.randn(1, 3, 32, 32))
+```
+Above `torchlayers.Linear(out_features=10)` is used. It is "equivalent" to
+original PyTorch's `torch.nn.Linear(in_features=?, out_features=10)` where `in_features`
+will be inferred from example input input during `torchlayers.build` call.
+Same thing happens with `torch.nn.Conv2d(in_channels, out_channels, kernel_size, ...)`
+which can be replaced directly by `tl.Conv2d(out_channels, kernel_size, ...)`.
+__Just remember to pass example input through the network!__
+## Simple image and text classifier in one!
+* We will use single "model" for both tasks.
+Firstly let's define it using `torch.nn` and `torchlayers`:
+```python
+import torch
+import torchlayers as tl
+# torch.nn and torchlayers can be mixed easily
+model = torch.nn.Sequential(
+ tl.Conv(64), # specify ONLY out_channels
+ torch.nn.ReLU(), # use torch.nn wherever you wish
+ tl.BatchNorm(), # BatchNormNd inferred from input
+ tl.Conv(128), # Default kernel_size equal to 3
+ tl.ReLU(),
+ tl.Conv(256, kernel_size=11), # "same" padding as default
+ tl.GlobalMaxPool(), # Known from Keras
+ tl.Linear(10), # Output for 10 classes
+)
+print(model)
+```
+Above would give you model's summary like this (__notice question marks for not yet inferred values__):
+```python
+Sequential(
+ (0): Conv(in_channels=?, out_channels=64, kernel_size=3, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros)
+ (1): ReLU()
+ (2): BatchNorm(num_features=?, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+ (3): Conv(in_channels=?, out_channels=128, kernel_size=3, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros)
+ (4): ReLU()
+ (5): Conv(in_channels=?, out_channels=256, kernel_size=11, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros)
+ (6): GlobalMaxPool()
+ (7): Linear(in_features=?, out_features=10, bias=True)
+)
+```
+* Now you can __build__/instantiate your model with example input (in this case MNIST-like):
+```python
+mnist_model = tl.build(model, torch.randn(1, 3, 28, 28))
+```
+* Or if it's text classification you are after, same model could be built with different
+`input shape` (e.g. for text classification using `300` dimensional pretrained embedding):
+```python
+# [batch, embedding, timesteps], first dimension > 1 for BatchNorm1d to work
+text_model = tl.build(model, torch.randn(2, 300, 1))
+```
+* Finally, you can `print` both models after instantiation, provided below side
+by-side for readability (__notice different dimenstionality, e.g. `Conv2d` vs `Conv1d` after `torchlayers.build`__):
+```python
+ # TEXT CLASSIFIER MNIST CLASSIFIER
+ Sequential( Sequential(
+ (0): Conv1d(300, 64) (0): Conv2d(3, 64)
+ (1): ReLU() (1): ReLU()
+ (2): BatchNorm1d(64) (2): BatchNorm2d(64)
+ (3): Conv1d(64, 128) (3): Conv2d(64, 128)
+ (4): ReLU() (4): ReLU()
+ (5): Conv1d(128, 256) (5): Conv2d(128, 256)
+ (6): GlobalMaxPool() (6): GlobalMaxPool()
+ (7): Linear(256, 10) (7): Linear(256, 10)
+ ) )
+```
+As you can see both modules "compiled" into original `pytorch` layers.
+## Custom modules with shape inference capabilities
+User can define any module and make it shape inferable with `torchlayers.infer`
+function:
+```python
+ # Class defined with in_features
+ # It might be a good practice to use _ prefix and Impl as postfix
+ # to differentiate from shape inferable version
+class _MyLinearImpl(torch.nn.Module):
+ def __init__(self, in_features: int, out_features: int):
+ super().__init__()
+ self.weight = torch.nn.Parameter(torch.randn(out_features, in_features))
+ self.bias = torch.nn.Parameter(torch.randn(out_features))
+ def forward(self, inputs):
+ return torch.nn.functional.linear(inputs, self.weight, self.bias)
+MyLinear = tl.infer(_MyLinearImpl)
+# Build and use just like any other layer in this library
+layer =tl.build(MyLinear(out_features=32), torch.randn(1, 64))
+layer(torch.randn(1, 64))
+```
+By default `inputs.shape[1]` will be used as `in_features` value
+during initial `forward` pass. If you wish to use different `index` (e.g. to infer using
+`inputs.shape[3]`) use `MyLayer = tl.infer(_MyLayerImpl, index=3)` as a decorator.
+## Autoencoder with inverted residual bottleneck and pixel shuffle
+Please check code comments and [__documentation__](https://szymonmaszke.github.io/torchlayers/)
+if needed. If you are unsure what autoencoder is you could see
+[__this example blog post__](https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726).
+Below is a convolutional denoising autoencoder example for `ImageNet`-like images.
+Think of it like a demonstration of capabilities of different layers
+and building blocks provided by `torchlayers`.
+```python
+# Input - 3 x 256 x 256 for ImageNet reconstruction
+class AutoEncoder(torch.nn.Module):
+ def __init__(self):
+ super().__init__()
+ self.encoder = tl.Sequential(
+ tl.StandardNormalNoise(), # Apply noise to input images
+ tl.Conv(64, kernel_size=7),
+ tl.activations.Swish(), # Direct access to module .activations
+ tl.InvertedResidualBottleneck(squeeze_excitation=False),
+ tl.AvgPool(), # shape 64 x 128 x 128, kernel_size=2 by default
+ tl.HardSwish(), # Access simply through tl
+ tl.SeparableConv(128), # Up number of channels to 128
+ tl.InvertedResidualBottleneck(), # Default with squeeze excitation
+ torch.nn.ReLU(),
+ tl.AvgPool(), # shape 128 x 64 x 64, kernel_size=2 by default
+ tl.DepthwiseConv(256), # DepthwiseConv easier to use
+ # Pass input thrice through the same weights like in PolyNet
+ tl.Poly(tl.InvertedResidualBottleneck(), order=3),
+ tl.ReLU(), # all torch.nn can be accessed via tl
+ tl.MaxPool(), # shape 256 x 32 x 32
+ tl.Fire(out_channels=512), # shape 512 x 32 x 32
+ tl.SqueezeExcitation(hidden=64),
+ tl.InvertedResidualBottleneck(),
+ tl.MaxPool(), # shape 512 x 16 x 16
+ tl.InvertedResidualBottleneck(squeeze_excitation=False),
+ # Randomly switch off the last two layers with 0.5 probability
+ tl.StochasticDepth(
+ torch.nn.Sequential(
+ tl.InvertedResidualBottleneck(squeeze_excitation=False),
+ tl.InvertedResidualBottleneck(squeeze_excitation=False),
+ ),
+ p=0.5,
+ ),
+ tl.AvgPool(), # shape 512 x 8 x 8
+ )
+ # This one is more "standard"
+ self.decoder = tl.Sequential(
+ tl.Poly(tl.InvertedResidualBottleneck(), order=2),
+ # Has ICNR initialization by default after calling `build`
+ tl.ConvPixelShuffle(out_channels=512, upscale_factor=2),
+ # Shape 512 x 16 x 16 after PixelShuffle
+ tl.Poly(tl.InvertedResidualBottleneck(), order=3),
+ tl.ConvPixelShuffle(out_channels=256, upscale_factor=2),
+ # Shape 256 x 32 x 32
+ tl.Poly(tl.InvertedResidualBottleneck(), order=3),
+ tl.ConvPixelShuffle(out_channels=128, upscale_factor=2),
+ # Shape 128 x 64 x 64
+ tl.Poly(tl.InvertedResidualBottleneck(), order=4),
+ tl.ConvPixelShuffle(out_channels=64, upscale_factor=2),
+ # Shape 64 x 128 x 128
+ tl.InvertedResidualBottleneck(),
+ tl.Conv(256),
+ tl.Dropout(), # Defaults to 0.5 and Dropout2d for images
+ tl.Swish(),
+ tl.InstanceNorm(),
+ tl.ConvPixelShuffle(out_channels=32, upscale_factor=2),
+ # Shape 32 x 256 x 256
+ tl.Conv(16),
+ tl.Swish(),
+ tl.Conv(3),
+ # Shape 3 x 256 x 256
+ )
+ def forward(self, inputs):
+ return self.decoder(self.encoder(inputs))
+```
+Now one can instantiate the module and use it with `torch.nn.MSELoss` as per usual.
+```python
+autoencoder = tl.build(AutoEncoder(), torch.randn(1, 3, 256, 256))
+```
+# Installation
+## [pip](<https://pypi.org/project/torchlayers/>)
+### Latest release:
+```shell
+pip install --user torchlayers
+```
+### Nightly:
+```shell
+pip install --user torchlayers-nightly
+```
+## [Docker](https://hub.docker.com/r/szymonmaszke/torchlayers)
+__CPU standalone__ and various versions of __GPU enabled__ images are available
+at [dockerhub](https://hub.docker.com/r/szymonmaszke/torchlayers/tags).
+For CPU quickstart, issue:
+```shell
+docker pull szymonmaszke/torchlayers:18.04
+```
+Nightly builds are also available, just prefix tag with `nightly_`. If you are going for `GPU` image make sure you have
+[nvidia/docker](https://github.com/NVIDIA/nvidia-docker) installed and it's runtime set.
+# Contributing
+If you find issue or would like to see some functionality (or implement one), please [open new Issue](https://help.github.com/en/articles/creating-an-issue) or [create Pull Request](https://help.github.com/en/articles/creating-a-pull-request-from-a-fork).
+
+%package -n python3-torchlayers-nightly
+Summary: Input shape inference and SOTA custom layers for PyTorch.
+Provides: python-torchlayers-nightly
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-torchlayers-nightly
+| Version | Docs | Tests | Coverage | Style | PyPI | Python | PyTorch | Docker |
+|---------|------|-------|----------|-------|------|--------|---------|--------|
+| [![Version](https://img.shields.io/static/v1?label=&message=0.1.1&color=377EF0&style=for-the-badge)](https://github.com/szymonmaszke/torchlayers/releases) | [![Documentation](https://img.shields.io/static/v1?label=&message=docs&color=EE4C2C&style=for-the-badge)](https://szymonmaszke.github.io/torchlayers/) | ![Tests](https://img.shields.io/github/workflow/status/szymonmaszke/torchlayers/test?label=%20&style=for-the-badge) | [![codecov](https://codecov.io/gh/szymonmaszke/torchlayers/branch/master/graph/badge.svg?token=GbZmdqbTWM)](https://codecov.io/gh/szymonmaszke/torchlayers) | [![codebeat badge](https://codebeat.co/badges/0e3d33b0-95a4-429c-8692-881a4ffeac6b)](https://codebeat.co/projects/github-com-szymonmaszke-torchlayers-master) | [![PyPI](https://img.shields.io/static/v1?label=&message=PyPI&color=377EF0&style=for-the-badge)](https://pypi.org/project/torchlayers/) | [![Python](https://img.shields.io/static/v1?label=&message=>=3.7&color=377EF0&style=for-the-badge&logo=python&logoColor=F8C63D)](https://www.python.org/) | [![PyTorch](https://img.shields.io/static/v1?label=&message=>=1.3.0&color=EE4C2C&style=for-the-badge)](https://pytorch.org/) | [![Docker](https://img.shields.io/static/v1?label=&message=docker&color=309cef&style=for-the-badge)](https://hub.docker.com/r/szymonmaszke/torchlayers) |
+[__torchlayers__](https://szymonmaszke.github.io/torchlayers/) is a library based on [__PyTorch__](https://pytorch.org/)
+providing __automatic shape and dimensionality inference of `torch.nn` layers__ + additional
+building blocks featured in current SOTA architectures (e.g. [Efficient-Net](https://arxiv.org/abs/1905.11946)).
+Above requires no user intervention (except single call to `torchlayers.build`)
+similarly to the one seen in [__Keras__](https://www.tensorflow.org/guide/keras).
+### Main functionalities:
+* __Shape inference__ for most of `torch.nn` module (__convolutional, recurrent, transformer, attention and linear layers__)
+* __Dimensionality inference__ (e.g. `torchlayers.Conv` working as `torch.nn.Conv1d/2d/3d` based on `input shape`)
+* __Shape inference of custom modules__ (see examples section)
+* __Additional [Keras-like](https://www.tensorflow.org/guide/keras) layers__ (e.g. `torchlayers.Reshape` or `torchlayers.StandardNormalNoise`)
+* __Additional SOTA layers__ mostly from ImageNet competitions
+(e.g. [PolyNet](https://arxiv.org/abs/1608.06993),
+[Squeeze-And-Excitation](https://arxiv.org/abs/1709.01507),
+[StochasticDepth](www.arxiv.org/abs/1512.03385>))
+* __Useful defaults__ (`"same"` padding and default `kernel_size=3` for `Conv`, dropout rates etc.)
+* __Zero overhead and [torchscript](https://pytorch.org/docs/stable/jit.html) support__
+__Keep in mind this library works almost exactly like PyTorch originally__.
+What that means is you can use `Sequential`, __define your own networks of any complexity using
+`torch.nn.Module`__, create new layers with shape inference etc.
+_See below to get some intuition about library_.
+# Examples
+For full functionality please check [__torchlayers documentation__](https://szymonmaszke.github.io/torchlayers/).
+Below examples should introduce all necessary concepts you should know.
+## Basic classifier
+__All__ `torch.nn` modules can be used through `torchlayers` and __each module with input shape__
+will be appropriately modified with it's input inferable counterpart.
+```python
+import torchlayers as tl
+class Classifier(tl.Module):
+ def __init__(self):
+ super().__init__()
+ self.conv1 = tl.Conv2d(64, kernel_size=6)
+ self.conv2 = tl.Conv2d(128, kernel_size=3)
+ self.conv3 = tl.Conv2d(256, kernel_size=3, padding=1)
+ # New layer, more on that in the next example
+ self.pooling = tl.GlobalMaxPool()
+ self.dense = tl.Linear(10)
+ def forward(self, x):
+ x = torch.relu(self.conv1(x))
+ x = torch.relu(self.conv2(x))
+ x = torch.relu(self.conv3(x))
+ return self.dense(self.pooling(x))
+# Pass model and any example inputs afterwards
+clf = tl.build(Classifier(), torch.randn(1, 3, 32, 32))
+```
+Above `torchlayers.Linear(out_features=10)` is used. It is "equivalent" to
+original PyTorch's `torch.nn.Linear(in_features=?, out_features=10)` where `in_features`
+will be inferred from example input input during `torchlayers.build` call.
+Same thing happens with `torch.nn.Conv2d(in_channels, out_channels, kernel_size, ...)`
+which can be replaced directly by `tl.Conv2d(out_channels, kernel_size, ...)`.
+__Just remember to pass example input through the network!__
+## Simple image and text classifier in one!
+* We will use single "model" for both tasks.
+Firstly let's define it using `torch.nn` and `torchlayers`:
+```python
+import torch
+import torchlayers as tl
+# torch.nn and torchlayers can be mixed easily
+model = torch.nn.Sequential(
+ tl.Conv(64), # specify ONLY out_channels
+ torch.nn.ReLU(), # use torch.nn wherever you wish
+ tl.BatchNorm(), # BatchNormNd inferred from input
+ tl.Conv(128), # Default kernel_size equal to 3
+ tl.ReLU(),
+ tl.Conv(256, kernel_size=11), # "same" padding as default
+ tl.GlobalMaxPool(), # Known from Keras
+ tl.Linear(10), # Output for 10 classes
+)
+print(model)
+```
+Above would give you model's summary like this (__notice question marks for not yet inferred values__):
+```python
+Sequential(
+ (0): Conv(in_channels=?, out_channels=64, kernel_size=3, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros)
+ (1): ReLU()
+ (2): BatchNorm(num_features=?, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+ (3): Conv(in_channels=?, out_channels=128, kernel_size=3, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros)
+ (4): ReLU()
+ (5): Conv(in_channels=?, out_channels=256, kernel_size=11, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros)
+ (6): GlobalMaxPool()
+ (7): Linear(in_features=?, out_features=10, bias=True)
+)
+```
+* Now you can __build__/instantiate your model with example input (in this case MNIST-like):
+```python
+mnist_model = tl.build(model, torch.randn(1, 3, 28, 28))
+```
+* Or if it's text classification you are after, same model could be built with different
+`input shape` (e.g. for text classification using `300` dimensional pretrained embedding):
+```python
+# [batch, embedding, timesteps], first dimension > 1 for BatchNorm1d to work
+text_model = tl.build(model, torch.randn(2, 300, 1))
+```
+* Finally, you can `print` both models after instantiation, provided below side
+by-side for readability (__notice different dimenstionality, e.g. `Conv2d` vs `Conv1d` after `torchlayers.build`__):
+```python
+ # TEXT CLASSIFIER MNIST CLASSIFIER
+ Sequential( Sequential(
+ (0): Conv1d(300, 64) (0): Conv2d(3, 64)
+ (1): ReLU() (1): ReLU()
+ (2): BatchNorm1d(64) (2): BatchNorm2d(64)
+ (3): Conv1d(64, 128) (3): Conv2d(64, 128)
+ (4): ReLU() (4): ReLU()
+ (5): Conv1d(128, 256) (5): Conv2d(128, 256)
+ (6): GlobalMaxPool() (6): GlobalMaxPool()
+ (7): Linear(256, 10) (7): Linear(256, 10)
+ ) )
+```
+As you can see both modules "compiled" into original `pytorch` layers.
+## Custom modules with shape inference capabilities
+User can define any module and make it shape inferable with `torchlayers.infer`
+function:
+```python
+ # Class defined with in_features
+ # It might be a good practice to use _ prefix and Impl as postfix
+ # to differentiate from shape inferable version
+class _MyLinearImpl(torch.nn.Module):
+ def __init__(self, in_features: int, out_features: int):
+ super().__init__()
+ self.weight = torch.nn.Parameter(torch.randn(out_features, in_features))
+ self.bias = torch.nn.Parameter(torch.randn(out_features))
+ def forward(self, inputs):
+ return torch.nn.functional.linear(inputs, self.weight, self.bias)
+MyLinear = tl.infer(_MyLinearImpl)
+# Build and use just like any other layer in this library
+layer =tl.build(MyLinear(out_features=32), torch.randn(1, 64))
+layer(torch.randn(1, 64))
+```
+By default `inputs.shape[1]` will be used as `in_features` value
+during initial `forward` pass. If you wish to use different `index` (e.g. to infer using
+`inputs.shape[3]`) use `MyLayer = tl.infer(_MyLayerImpl, index=3)` as a decorator.
+## Autoencoder with inverted residual bottleneck and pixel shuffle
+Please check code comments and [__documentation__](https://szymonmaszke.github.io/torchlayers/)
+if needed. If you are unsure what autoencoder is you could see
+[__this example blog post__](https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726).
+Below is a convolutional denoising autoencoder example for `ImageNet`-like images.
+Think of it like a demonstration of capabilities of different layers
+and building blocks provided by `torchlayers`.
+```python
+# Input - 3 x 256 x 256 for ImageNet reconstruction
+class AutoEncoder(torch.nn.Module):
+ def __init__(self):
+ super().__init__()
+ self.encoder = tl.Sequential(
+ tl.StandardNormalNoise(), # Apply noise to input images
+ tl.Conv(64, kernel_size=7),
+ tl.activations.Swish(), # Direct access to module .activations
+ tl.InvertedResidualBottleneck(squeeze_excitation=False),
+ tl.AvgPool(), # shape 64 x 128 x 128, kernel_size=2 by default
+ tl.HardSwish(), # Access simply through tl
+ tl.SeparableConv(128), # Up number of channels to 128
+ tl.InvertedResidualBottleneck(), # Default with squeeze excitation
+ torch.nn.ReLU(),
+ tl.AvgPool(), # shape 128 x 64 x 64, kernel_size=2 by default
+ tl.DepthwiseConv(256), # DepthwiseConv easier to use
+ # Pass input thrice through the same weights like in PolyNet
+ tl.Poly(tl.InvertedResidualBottleneck(), order=3),
+ tl.ReLU(), # all torch.nn can be accessed via tl
+ tl.MaxPool(), # shape 256 x 32 x 32
+ tl.Fire(out_channels=512), # shape 512 x 32 x 32
+ tl.SqueezeExcitation(hidden=64),
+ tl.InvertedResidualBottleneck(),
+ tl.MaxPool(), # shape 512 x 16 x 16
+ tl.InvertedResidualBottleneck(squeeze_excitation=False),
+ # Randomly switch off the last two layers with 0.5 probability
+ tl.StochasticDepth(
+ torch.nn.Sequential(
+ tl.InvertedResidualBottleneck(squeeze_excitation=False),
+ tl.InvertedResidualBottleneck(squeeze_excitation=False),
+ ),
+ p=0.5,
+ ),
+ tl.AvgPool(), # shape 512 x 8 x 8
+ )
+ # This one is more "standard"
+ self.decoder = tl.Sequential(
+ tl.Poly(tl.InvertedResidualBottleneck(), order=2),
+ # Has ICNR initialization by default after calling `build`
+ tl.ConvPixelShuffle(out_channels=512, upscale_factor=2),
+ # Shape 512 x 16 x 16 after PixelShuffle
+ tl.Poly(tl.InvertedResidualBottleneck(), order=3),
+ tl.ConvPixelShuffle(out_channels=256, upscale_factor=2),
+ # Shape 256 x 32 x 32
+ tl.Poly(tl.InvertedResidualBottleneck(), order=3),
+ tl.ConvPixelShuffle(out_channels=128, upscale_factor=2),
+ # Shape 128 x 64 x 64
+ tl.Poly(tl.InvertedResidualBottleneck(), order=4),
+ tl.ConvPixelShuffle(out_channels=64, upscale_factor=2),
+ # Shape 64 x 128 x 128
+ tl.InvertedResidualBottleneck(),
+ tl.Conv(256),
+ tl.Dropout(), # Defaults to 0.5 and Dropout2d for images
+ tl.Swish(),
+ tl.InstanceNorm(),
+ tl.ConvPixelShuffle(out_channels=32, upscale_factor=2),
+ # Shape 32 x 256 x 256
+ tl.Conv(16),
+ tl.Swish(),
+ tl.Conv(3),
+ # Shape 3 x 256 x 256
+ )
+ def forward(self, inputs):
+ return self.decoder(self.encoder(inputs))
+```
+Now one can instantiate the module and use it with `torch.nn.MSELoss` as per usual.
+```python
+autoencoder = tl.build(AutoEncoder(), torch.randn(1, 3, 256, 256))
+```
+# Installation
+## [pip](<https://pypi.org/project/torchlayers/>)
+### Latest release:
+```shell
+pip install --user torchlayers
+```
+### Nightly:
+```shell
+pip install --user torchlayers-nightly
+```
+## [Docker](https://hub.docker.com/r/szymonmaszke/torchlayers)
+__CPU standalone__ and various versions of __GPU enabled__ images are available
+at [dockerhub](https://hub.docker.com/r/szymonmaszke/torchlayers/tags).
+For CPU quickstart, issue:
+```shell
+docker pull szymonmaszke/torchlayers:18.04
+```
+Nightly builds are also available, just prefix tag with `nightly_`. If you are going for `GPU` image make sure you have
+[nvidia/docker](https://github.com/NVIDIA/nvidia-docker) installed and it's runtime set.
+# Contributing
+If you find issue or would like to see some functionality (or implement one), please [open new Issue](https://help.github.com/en/articles/creating-an-issue) or [create Pull Request](https://help.github.com/en/articles/creating-a-pull-request-from-a-fork).
+
+%package help
+Summary: Development documents and examples for torchlayers-nightly
+Provides: python3-torchlayers-nightly-doc
+%description help
+| Version | Docs | Tests | Coverage | Style | PyPI | Python | PyTorch | Docker |
+|---------|------|-------|----------|-------|------|--------|---------|--------|
+| [![Version](https://img.shields.io/static/v1?label=&message=0.1.1&color=377EF0&style=for-the-badge)](https://github.com/szymonmaszke/torchlayers/releases) | [![Documentation](https://img.shields.io/static/v1?label=&message=docs&color=EE4C2C&style=for-the-badge)](https://szymonmaszke.github.io/torchlayers/) | ![Tests](https://img.shields.io/github/workflow/status/szymonmaszke/torchlayers/test?label=%20&style=for-the-badge) | [![codecov](https://codecov.io/gh/szymonmaszke/torchlayers/branch/master/graph/badge.svg?token=GbZmdqbTWM)](https://codecov.io/gh/szymonmaszke/torchlayers) | [![codebeat badge](https://codebeat.co/badges/0e3d33b0-95a4-429c-8692-881a4ffeac6b)](https://codebeat.co/projects/github-com-szymonmaszke-torchlayers-master) | [![PyPI](https://img.shields.io/static/v1?label=&message=PyPI&color=377EF0&style=for-the-badge)](https://pypi.org/project/torchlayers/) | [![Python](https://img.shields.io/static/v1?label=&message=>=3.7&color=377EF0&style=for-the-badge&logo=python&logoColor=F8C63D)](https://www.python.org/) | [![PyTorch](https://img.shields.io/static/v1?label=&message=>=1.3.0&color=EE4C2C&style=for-the-badge)](https://pytorch.org/) | [![Docker](https://img.shields.io/static/v1?label=&message=docker&color=309cef&style=for-the-badge)](https://hub.docker.com/r/szymonmaszke/torchlayers) |
+[__torchlayers__](https://szymonmaszke.github.io/torchlayers/) is a library based on [__PyTorch__](https://pytorch.org/)
+providing __automatic shape and dimensionality inference of `torch.nn` layers__ + additional
+building blocks featured in current SOTA architectures (e.g. [Efficient-Net](https://arxiv.org/abs/1905.11946)).
+Above requires no user intervention (except single call to `torchlayers.build`)
+similarly to the one seen in [__Keras__](https://www.tensorflow.org/guide/keras).
+### Main functionalities:
+* __Shape inference__ for most of `torch.nn` module (__convolutional, recurrent, transformer, attention and linear layers__)
+* __Dimensionality inference__ (e.g. `torchlayers.Conv` working as `torch.nn.Conv1d/2d/3d` based on `input shape`)
+* __Shape inference of custom modules__ (see examples section)
+* __Additional [Keras-like](https://www.tensorflow.org/guide/keras) layers__ (e.g. `torchlayers.Reshape` or `torchlayers.StandardNormalNoise`)
+* __Additional SOTA layers__ mostly from ImageNet competitions
+(e.g. [PolyNet](https://arxiv.org/abs/1608.06993),
+[Squeeze-And-Excitation](https://arxiv.org/abs/1709.01507),
+[StochasticDepth](www.arxiv.org/abs/1512.03385>))
+* __Useful defaults__ (`"same"` padding and default `kernel_size=3` for `Conv`, dropout rates etc.)
+* __Zero overhead and [torchscript](https://pytorch.org/docs/stable/jit.html) support__
+__Keep in mind this library works almost exactly like PyTorch originally__.
+What that means is you can use `Sequential`, __define your own networks of any complexity using
+`torch.nn.Module`__, create new layers with shape inference etc.
+_See below to get some intuition about library_.
+# Examples
+For full functionality please check [__torchlayers documentation__](https://szymonmaszke.github.io/torchlayers/).
+Below examples should introduce all necessary concepts you should know.
+## Basic classifier
+__All__ `torch.nn` modules can be used through `torchlayers` and __each module with input shape__
+will be appropriately modified with it's input inferable counterpart.
+```python
+import torchlayers as tl
+class Classifier(tl.Module):
+ def __init__(self):
+ super().__init__()
+ self.conv1 = tl.Conv2d(64, kernel_size=6)
+ self.conv2 = tl.Conv2d(128, kernel_size=3)
+ self.conv3 = tl.Conv2d(256, kernel_size=3, padding=1)
+ # New layer, more on that in the next example
+ self.pooling = tl.GlobalMaxPool()
+ self.dense = tl.Linear(10)
+ def forward(self, x):
+ x = torch.relu(self.conv1(x))
+ x = torch.relu(self.conv2(x))
+ x = torch.relu(self.conv3(x))
+ return self.dense(self.pooling(x))
+# Pass model and any example inputs afterwards
+clf = tl.build(Classifier(), torch.randn(1, 3, 32, 32))
+```
+Above `torchlayers.Linear(out_features=10)` is used. It is "equivalent" to
+original PyTorch's `torch.nn.Linear(in_features=?, out_features=10)` where `in_features`
+will be inferred from example input input during `torchlayers.build` call.
+Same thing happens with `torch.nn.Conv2d(in_channels, out_channels, kernel_size, ...)`
+which can be replaced directly by `tl.Conv2d(out_channels, kernel_size, ...)`.
+__Just remember to pass example input through the network!__
+## Simple image and text classifier in one!
+* We will use single "model" for both tasks.
+Firstly let's define it using `torch.nn` and `torchlayers`:
+```python
+import torch
+import torchlayers as tl
+# torch.nn and torchlayers can be mixed easily
+model = torch.nn.Sequential(
+ tl.Conv(64), # specify ONLY out_channels
+ torch.nn.ReLU(), # use torch.nn wherever you wish
+ tl.BatchNorm(), # BatchNormNd inferred from input
+ tl.Conv(128), # Default kernel_size equal to 3
+ tl.ReLU(),
+ tl.Conv(256, kernel_size=11), # "same" padding as default
+ tl.GlobalMaxPool(), # Known from Keras
+ tl.Linear(10), # Output for 10 classes
+)
+print(model)
+```
+Above would give you model's summary like this (__notice question marks for not yet inferred values__):
+```python
+Sequential(
+ (0): Conv(in_channels=?, out_channels=64, kernel_size=3, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros)
+ (1): ReLU()
+ (2): BatchNorm(num_features=?, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
+ (3): Conv(in_channels=?, out_channels=128, kernel_size=3, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros)
+ (4): ReLU()
+ (5): Conv(in_channels=?, out_channels=256, kernel_size=11, stride=1, padding=same, dilation=1, groups=1, bias=True, padding_mode=zeros)
+ (6): GlobalMaxPool()
+ (7): Linear(in_features=?, out_features=10, bias=True)
+)
+```
+* Now you can __build__/instantiate your model with example input (in this case MNIST-like):
+```python
+mnist_model = tl.build(model, torch.randn(1, 3, 28, 28))
+```
+* Or if it's text classification you are after, same model could be built with different
+`input shape` (e.g. for text classification using `300` dimensional pretrained embedding):
+```python
+# [batch, embedding, timesteps], first dimension > 1 for BatchNorm1d to work
+text_model = tl.build(model, torch.randn(2, 300, 1))
+```
+* Finally, you can `print` both models after instantiation, provided below side
+by-side for readability (__notice different dimenstionality, e.g. `Conv2d` vs `Conv1d` after `torchlayers.build`__):
+```python
+ # TEXT CLASSIFIER MNIST CLASSIFIER
+ Sequential( Sequential(
+ (0): Conv1d(300, 64) (0): Conv2d(3, 64)
+ (1): ReLU() (1): ReLU()
+ (2): BatchNorm1d(64) (2): BatchNorm2d(64)
+ (3): Conv1d(64, 128) (3): Conv2d(64, 128)
+ (4): ReLU() (4): ReLU()
+ (5): Conv1d(128, 256) (5): Conv2d(128, 256)
+ (6): GlobalMaxPool() (6): GlobalMaxPool()
+ (7): Linear(256, 10) (7): Linear(256, 10)
+ ) )
+```
+As you can see both modules "compiled" into original `pytorch` layers.
+## Custom modules with shape inference capabilities
+User can define any module and make it shape inferable with `torchlayers.infer`
+function:
+```python
+ # Class defined with in_features
+ # It might be a good practice to use _ prefix and Impl as postfix
+ # to differentiate from shape inferable version
+class _MyLinearImpl(torch.nn.Module):
+ def __init__(self, in_features: int, out_features: int):
+ super().__init__()
+ self.weight = torch.nn.Parameter(torch.randn(out_features, in_features))
+ self.bias = torch.nn.Parameter(torch.randn(out_features))
+ def forward(self, inputs):
+ return torch.nn.functional.linear(inputs, self.weight, self.bias)
+MyLinear = tl.infer(_MyLinearImpl)
+# Build and use just like any other layer in this library
+layer =tl.build(MyLinear(out_features=32), torch.randn(1, 64))
+layer(torch.randn(1, 64))
+```
+By default `inputs.shape[1]` will be used as `in_features` value
+during initial `forward` pass. If you wish to use different `index` (e.g. to infer using
+`inputs.shape[3]`) use `MyLayer = tl.infer(_MyLayerImpl, index=3)` as a decorator.
+## Autoencoder with inverted residual bottleneck and pixel shuffle
+Please check code comments and [__documentation__](https://szymonmaszke.github.io/torchlayers/)
+if needed. If you are unsure what autoencoder is you could see
+[__this example blog post__](https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726).
+Below is a convolutional denoising autoencoder example for `ImageNet`-like images.
+Think of it like a demonstration of capabilities of different layers
+and building blocks provided by `torchlayers`.
+```python
+# Input - 3 x 256 x 256 for ImageNet reconstruction
+class AutoEncoder(torch.nn.Module):
+ def __init__(self):
+ super().__init__()
+ self.encoder = tl.Sequential(
+ tl.StandardNormalNoise(), # Apply noise to input images
+ tl.Conv(64, kernel_size=7),
+ tl.activations.Swish(), # Direct access to module .activations
+ tl.InvertedResidualBottleneck(squeeze_excitation=False),
+ tl.AvgPool(), # shape 64 x 128 x 128, kernel_size=2 by default
+ tl.HardSwish(), # Access simply through tl
+ tl.SeparableConv(128), # Up number of channels to 128
+ tl.InvertedResidualBottleneck(), # Default with squeeze excitation
+ torch.nn.ReLU(),
+ tl.AvgPool(), # shape 128 x 64 x 64, kernel_size=2 by default
+ tl.DepthwiseConv(256), # DepthwiseConv easier to use
+ # Pass input thrice through the same weights like in PolyNet
+ tl.Poly(tl.InvertedResidualBottleneck(), order=3),
+ tl.ReLU(), # all torch.nn can be accessed via tl
+ tl.MaxPool(), # shape 256 x 32 x 32
+ tl.Fire(out_channels=512), # shape 512 x 32 x 32
+ tl.SqueezeExcitation(hidden=64),
+ tl.InvertedResidualBottleneck(),
+ tl.MaxPool(), # shape 512 x 16 x 16
+ tl.InvertedResidualBottleneck(squeeze_excitation=False),
+ # Randomly switch off the last two layers with 0.5 probability
+ tl.StochasticDepth(
+ torch.nn.Sequential(
+ tl.InvertedResidualBottleneck(squeeze_excitation=False),
+ tl.InvertedResidualBottleneck(squeeze_excitation=False),
+ ),
+ p=0.5,
+ ),
+ tl.AvgPool(), # shape 512 x 8 x 8
+ )
+ # This one is more "standard"
+ self.decoder = tl.Sequential(
+ tl.Poly(tl.InvertedResidualBottleneck(), order=2),
+ # Has ICNR initialization by default after calling `build`
+ tl.ConvPixelShuffle(out_channels=512, upscale_factor=2),
+ # Shape 512 x 16 x 16 after PixelShuffle
+ tl.Poly(tl.InvertedResidualBottleneck(), order=3),
+ tl.ConvPixelShuffle(out_channels=256, upscale_factor=2),
+ # Shape 256 x 32 x 32
+ tl.Poly(tl.InvertedResidualBottleneck(), order=3),
+ tl.ConvPixelShuffle(out_channels=128, upscale_factor=2),
+ # Shape 128 x 64 x 64
+ tl.Poly(tl.InvertedResidualBottleneck(), order=4),
+ tl.ConvPixelShuffle(out_channels=64, upscale_factor=2),
+ # Shape 64 x 128 x 128
+ tl.InvertedResidualBottleneck(),
+ tl.Conv(256),
+ tl.Dropout(), # Defaults to 0.5 and Dropout2d for images
+ tl.Swish(),
+ tl.InstanceNorm(),
+ tl.ConvPixelShuffle(out_channels=32, upscale_factor=2),
+ # Shape 32 x 256 x 256
+ tl.Conv(16),
+ tl.Swish(),
+ tl.Conv(3),
+ # Shape 3 x 256 x 256
+ )
+ def forward(self, inputs):
+ return self.decoder(self.encoder(inputs))
+```
+Now one can instantiate the module and use it with `torch.nn.MSELoss` as per usual.
+```python
+autoencoder = tl.build(AutoEncoder(), torch.randn(1, 3, 256, 256))
+```
+# Installation
+## [pip](<https://pypi.org/project/torchlayers/>)
+### Latest release:
+```shell
+pip install --user torchlayers
+```
+### Nightly:
+```shell
+pip install --user torchlayers-nightly
+```
+## [Docker](https://hub.docker.com/r/szymonmaszke/torchlayers)
+__CPU standalone__ and various versions of __GPU enabled__ images are available
+at [dockerhub](https://hub.docker.com/r/szymonmaszke/torchlayers/tags).
+For CPU quickstart, issue:
+```shell
+docker pull szymonmaszke/torchlayers:18.04
+```
+Nightly builds are also available, just prefix tag with `nightly_`. If you are going for `GPU` image make sure you have
+[nvidia/docker](https://github.com/NVIDIA/nvidia-docker) installed and it's runtime set.
+# Contributing
+If you find issue or would like to see some functionality (or implement one), please [open new Issue](https://help.github.com/en/articles/creating-an-issue) or [create Pull Request](https://help.github.com/en/articles/creating-a-pull-request-from-a-fork).
+
+%prep
+%autosetup -n torchlayers-nightly-1681171628
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-torchlayers-nightly -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 1681171628-1
+- Package Spec generated