summaryrefslogtreecommitdiff
path: root/python-tql.spec
blob: 1c59b2f3920eae4fc7638312bd50721958f015d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
%global _empty_manifest_terminate_build 0
Name:		python-tql
Version:	2020.11.11.15.32.5
Release:	1
Summary:	description
License:	MIT
URL:		https://github.com/Jie-Yuan/tql-Python
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/a6/ba/cf1083309a906d9adbec7ee6650c93f0e6ff8f56fda3409d49698e70f216/tql-2020.11.11.15.32.5.tar.gz
BuildArch:	noarch

Requires:	python3-tqdm
Requires:	python3-thefuck
Requires:	python3-wrapt
Requires:	python3-emoji
Requires:	python3-pytz
Requires:	python3-pybind11
Requires:	python3-joblib
Requires:	python3-pydot
Requires:	python3-bs4
Requires:	python3-lxml
Requires:	python3-jieba
Requires:	python3-lightgbm
Requires:	python3-catboost
Requires:	python3-rgf-python
Requires:	python3-statsmodels
Requires:	python3-gensim
Requires:	python3-missingno
Requires:	python3-pandas-summary
Requires:	python3-scikit-learn
Requires:	python3-scikit-plot
Requires:	python3-tables
Requires:	python3-eli5
Requires:	python3-shap
Requires:	python3-seaborn
Requires:	python3-pyecharts
Requires:	python3-jovian
Requires:	python3-graphviz
Requires:	python3-gpustat

%description
- [mlcrate](https://github.com/mxbi/mlcrate)
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/README_1200x800.gif">
</p>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/coversmall_alt.png">
  <br/>
</p>
# data-science-ipython-notebooks
## Index
* [deep-learning](#deep-learning)
    * [tensorflow](#tensor-flow-tutorials)
    * [theano](#theano-tutorials)
    * [keras](#keras-tutorials)
    * [caffe](#deep-learning-misc)
* [scikit-learn](#scikit-learn)
* [statistical-inference-scipy](#statistical-inference-scipy)
* [pandas](#pandas)
* [matplotlib](#matplotlib)
* [numpy](#numpy)
* [python-data](#python-data)
* [kaggle-and-business-analyses](#kaggle-and-business-analyses)
* [spark](#spark)
* [mapreduce-python](#mapreduce-python)
* [amazon web services](#aws)
* [command lines](#commands)
* [misc](#misc)
* [notebook-installation](#notebook-installation)
* [credits](#credits)
* [contributing](#contributing)
* [contact-info](#contact-info)
* [license](#license)
<br/>
<p align="center">
  <img src="http://i.imgur.com/ZhKXrKZ.png">
</p>
## deep-learning
IPython Notebook(s) demonstrating deep learning functionality.
<br/>
<p align="center">
  <img src="https://avatars0.githubusercontent.com/u/15658638?v=3&s=100">
</p>
### tensor-flow-tutorials
Additional TensorFlow tutorials:
* [pkmital/tensorflow_tutorials](https://github.com/pkmital/tensorflow_tutorials)
* [nlintz/TensorFlow-Tutorials](https://github.com/nlintz/TensorFlow-Tutorials)
* [alrojo/tensorflow-tutorial](https://github.com/alrojo/tensorflow-tutorial)
* [BinRoot/TensorFlow-Book](https://github.com/BinRoot/TensorFlow-Book)
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [tsf-basics](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/1_intro/basic_operations.ipynb) | Learn basic operations in TensorFlow, a library for various kinds of perceptual and language understanding tasks from Google. |
| [tsf-linear](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/2_basic_classifiers/linear_regression.ipynb) | Implement linear regression in TensorFlow. |
| [tsf-logistic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/2_basic_classifiers/logistic_regression.ipynb) | Implement logistic regression in TensorFlow. |
| [tsf-nn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/2_basic_classifiers/nearest_neighbor.ipynb) | Implement nearest neighboars in TensorFlow. |
| [tsf-alex](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/alexnet.ipynb) | Implement AlexNet in TensorFlow. |
| [tsf-cnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/convolutional_network.ipynb) | Implement convolutional neural networks in TensorFlow. |
| [tsf-mlp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/multilayer_perceptron.ipynb) | Implement multilayer perceptrons in TensorFlow. |
| [tsf-rnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/recurrent_network.ipynb) | Implement recurrent neural networks in TensorFlow. |
| [tsf-gpu](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/4_multi_gpu/multigpu_basics.ipynb) | Learn about basic multi-GPU computation in TensorFlow. |
| [tsf-gviz](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/5_ui/graph_visualization.ipynb) | Learn about graph visualization in TensorFlow. |
| [tsf-lviz](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/5_ui/loss_visualization.ipynb) | Learn about loss visualization in TensorFlow. |
### tensor-flow-exercises
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [tsf-not-mnist](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/1_notmnist.ipynb) | Learn simple data curation by creating a pickle with formatted datasets for training, development and testing in TensorFlow. |
| [tsf-fully-connected](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/2_fullyconnected.ipynb) | Progressively train deeper and more accurate models using logistic regression and neural networks in TensorFlow. |
| [tsf-regularization](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/3_regularization.ipynb) | Explore regularization techniques by training fully connected networks to classify notMNIST characters in TensorFlow. |
| [tsf-convolutions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/4_convolutions.ipynb) | Create convolutional neural networks in TensorFlow. |
| [tsf-word2vec](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/5_word2vec.ipynb) | Train a skip-gram model over Text8 data in TensorFlow. |
| [tsf-lstm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/6_lstm.ipynb) | Train a LSTM character model over Text8 data in TensorFlow. |
<br/>
<p align="center">
  <img src="http://www.deeplearning.net/software/theano/_static/theano_logo_allblue_200x46.png">
</p>
### theano-tutorials
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [theano-intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/intro_theano.ipynb) | Intro to Theano, which allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation. |
| [theano-scan](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/scan_tutorial/scan_tutorial.ipynb) | Learn scans, a mechanism to perform loops in a Theano graph. |
| [theano-logistic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/logistic_regression.ipynb) | Implement logistic regression in Theano. |
| [theano-rnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/rnn_tutorial/simple_rnn.ipynb) | Implement recurrent neural networks in Theano. |
| [theano-mlp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/theano_mlp/theano_mlp.ipynb) | Implement multilayer perceptrons in Theano. |
<br/>
<p align="center">
  <img src="http://i.imgur.com/L45Q8c2.jpg">
</p>
### keras-tutorials
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| keras | Keras is an open source neural network library written in Python. It is capable of running on top of either Tensorflow or Theano. |
| [setup](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/0.%20Preamble.ipynb) | Learn about the tutorial goals and how to set up your Keras environment. |
| [intro-deep-learning-ann](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/1.1%20Introduction%20-%20Deep%20Learning%20and%20ANN.ipynb) | Get an intro to deep learning with Keras and Artificial Neural Networks (ANN). |
| [theano](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/1.2%20Introduction%20-%20Theano.ipynb) | Learn about Theano by working with weights matrices and gradients. |
| [keras-otto](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/1.3%20Introduction%20-%20Keras.ipynb) | Learn about Keras by looking at the Kaggle Otto challenge. |
| [ann-mnist](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/1.4%20%28Extra%29%20A%20Simple%20Implementation%20of%20ANN%20for%20MNIST.ipynb) | Review a simple implementation of ANN for MNIST using Keras. |
| [conv-nets](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/2.1%20Supervised%20Learning%20-%20ConvNets.ipynb) | Learn about Convolutional Neural Networks (CNNs) with Keras. |
| [conv-net-1](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/2.2.1%20Supervised%20Learning%20-%20ConvNet%20HandsOn%20Part%20I.ipynb) | Recognize handwritten digits from MNIST using Keras - Part 1. |
| [conv-net-2](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/2.2.2%20Supervised%20Learning%20-%20ConvNet%20HandsOn%20Part%20II.ipynb) | Recognize handwritten digits from MNIST using Keras - Part 2. |
| [keras-models](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/2.3%20Supervised%20Learning%20-%20Famous%20Models%20with%20Keras.ipynb) | Use pre-trained models such as VGG16, VGG19, ResNet50, and Inception v3 with Keras. |
| [auto-encoders](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/3.1%20Unsupervised%20Learning%20-%20AutoEncoders%20and%20Embeddings.ipynb) | Learn about Autoencoders with Keras. |
| [rnn-lstm](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/3.2%20RNN%20and%20LSTM.ipynb) | Learn about Recurrent Neural Networks (RNNs) with Keras. |
| [lstm-sentence-gen](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/3.3%20%28Extra%29%20LSTM%20for%20Sentence%20Generation.ipynb) |  Learn about RNNs using Long Short Term Memory (LSTM) networks with Keras. |
### deep-learning-misc
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [deep-dream](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/deep-dream/dream.ipynb) | Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scikitlearn.png">
</p>
## scikit-learn
IPython Notebook(s) demonstrating scikit-learn functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb) | Intro notebook to scikit-learn.  Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
| [knn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb#K-Nearest-Neighbors-Classifier) | Implement k-nearest neighbors in scikit-learn. |
| [linear-reg](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-linear-reg.ipynb) | Implement linear regression in scikit-learn. |
| [svm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-svm.ipynb) | Implement support vector machine classifiers with and without kernels in scikit-learn. |
| [random-forest](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-random-forest.ipynb) | Implement random forest classifiers and regressors in scikit-learn. |
| [k-means](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-k-means.ipynb) | Implement k-means clustering in scikit-learn. |
| [pca](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-pca.ipynb) | Implement principal component analysis in scikit-learn. |
| [gmm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-gmm.ipynb) | Implement Gaussian mixture models in scikit-learn. |
| [validation](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-validation.ipynb) | Implement validation and model selection in scikit-learn. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scipy.png">
</p>
## statistical-inference-scipy
IPython Notebook(s) demonstrating statistical inference with SciPy functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| scipy | SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy extension of Python. It adds significant power to the interactive Python session by providing the user with high-level commands and classes for manipulating and visualizing data. |
| [effect-size](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scipy/effect_size.ipynb) | Explore statistics that quantify effect size by analyzing the difference in height between men and women.  Uses data from the Behavioral Risk Factor Surveillance System (BRFSS) to estimate the mean and standard deviation of height for adult women and men in the United States. |
| [sampling](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scipy/sampling.ipynb) | Explore random sampling by analyzing the average weight of men and women in the United States using BRFSS data. |
| [hypothesis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scipy/hypothesis.ipynb) | Explore hypothesis testing by analyzing the difference of first-born babies compared with others. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/pandas.png">
</p>
## pandas
IPython Notebook(s) demonstrating pandas functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [pandas](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb) | Software library written for data manipulation and analysis in Python. Offers data structures and operations for manipulating numerical tables and time series. |
| [github-data-wrangling](https://github.com/donnemartin/viz/blob/master/githubstats/data_wrangling.ipynb) | Learn how to load, clean, merge, and feature engineer by analyzing GitHub data from the [`Viz`](https://github.com/donnemartin/viz) repo. |
| [Introduction-to-Pandas](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.00-Introduction-to-Pandas.ipynb) | Introduction to Pandas. |
| [Introducing-Pandas-Objects](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.01-Introducing-Pandas-Objects.ipynb) | Learn about Pandas objects. |
| [Data Indexing and Selection](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.02-Data-Indexing-and-Selection.ipynb) | Learn about data indexing and selection in Pandas. |
| [Operations-in-Pandas](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.03-Operations-in-Pandas.ipynb) | Learn about operating on data in Pandas. |
| [Missing-Values](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.04-Missing-Values.ipynb) | Learn about handling missing data in Pandas. |
| [Hierarchical-Indexing](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.05-Hierarchical-Indexing.ipynb) | Learn about hierarchical indexing in Pandas. |
| [Concat-And-Append](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.06-Concat-And-Append.ipynb) | Learn about combining datasets: concat and append in Pandas. |
| [Merge-and-Join](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.07-Merge-and-Join.ipynb) | Learn about combining datasets: merge and join in Pandas. |
| [Aggregation-and-Grouping](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.08-Aggregation-and-Grouping.ipynb) | Learn about aggregation and grouping in Pandas. |
| [Pivot-Tables](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.09-Pivot-Tables.ipynb) | Learn about pivot tables in Pandas. |
| [Working-With-Strings](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.10-Working-With-Strings.ipynb) | Learn about vectorized string operations in Pandas. |
| [Working-with-Time-Series](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.11-Working-with-Time-Series.ipynb) | Learn about working with time series in pandas. |
| [Performance-Eval-and-Query](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.12-Performance-Eval-and-Query.ipynb) | Learn about high-performance Pandas: eval() and query() in Pandas. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/matplotlib.png">
</p>
## matplotlib
IPython Notebook(s) demonstrating matplotlib functionality.
| Notebook | Description |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| [matplotlib](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb) | Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. |
| [matplotlib-applied](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib-applied.ipynb) | Apply matplotlib visualizations to Kaggle competitions for exploratory data analysis.  Learn how to create bar plots, histograms, subplot2grid, normalized plots, scatter plots, subplots, and kernel density estimation plots. |
| [Introduction-To-Matplotlib](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.00-Introduction-To-Matplotlib.ipynb) | Introduction to Matplotlib. |
| [Simple-Line-Plots](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.01-Simple-Line-Plots.ipynb) | Learn about simple line plots in Matplotlib. |
| [Simple-Scatter-Plots](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.02-Simple-Scatter-Plots.ipynb) | Learn about simple scatter plots in Matplotlib. |
| [Errorbars.ipynb](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.03-Errorbars.ipynb) | Learn about visualizing errors in Matplotlib. |
| [Density-and-Contour-Plots](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.04-Density-and-Contour-Plots.ipynb) | Learn about density and contour plots in Matplotlib. |
| [Histograms-and-Binnings](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.05-Histograms-and-Binnings.ipynb) | Learn about histograms, binnings, and density in Matplotlib. |
| [Customizing-Legends](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.06-Customizing-Legends.ipynb) | Learn about customizing plot legends in Matplotlib. |
| [Customizing-Colorbars](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.07-Customizing-Colorbars.ipynb) | Learn about customizing colorbars in Matplotlib. |
| [Multiple-Subplots](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.08-Multiple-Subplots.ipynb) | Learn about multiple subplots in Matplotlib. |
| [Text-and-Annotation](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.09-Text-and-Annotation.ipynb) | Learn about text and annotation in Matplotlib. |
| [Customizing-Ticks](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.10-Customizing-Ticks.ipynb) | Learn about customizing ticks in Matplotlib. |
| [Settings-and-Stylesheets](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.11-Settings-and-Stylesheets.ipynb) | Learn about customizing Matplotlib: configurations and stylesheets. |
| [Three-Dimensional-Plotting](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.12-Three-Dimensional-Plotting.ipynb) | Learn about three-dimensional plotting in Matplotlib. |
| [Geographic-Data-With-Basemap](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.13-Geographic-Data-With-Basemap.ipynb) | Learn about geographic data with basemap in Matplotlib. |
| [Visualization-With-Seaborn](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.14-Visualization-With-Seaborn.ipynb) | Learn about visualization with Seaborn. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/numpy.png">
</p>
## numpy
IPython Notebook(s) demonstrating NumPy functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [numpy](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb) | Adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
| [Introduction-to-NumPy](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.00-Introduction-to-NumPy.ipynb) | Introduction to NumPy. |
| [Understanding-Data-Types](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.01-Understanding-Data-Types.ipynb) | Learn about data types in Python. |
| [The-Basics-Of-NumPy-Arrays](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.02-The-Basics-Of-NumPy-Arrays.ipynb) | Learn about the basics of NumPy arrays. |
| [Computation-on-arrays-ufuncs](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.03-Computation-on-arrays-ufuncs.ipynb) | Learn about computations on NumPy arrays: universal functions. |
| [Computation-on-arrays-aggregates](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.04-Computation-on-arrays-aggregates.ipynb) | Learn about aggregations: min, max, and everything in between in NumPy. |
| [Computation-on-arrays-broadcasting](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.05-Computation-on-arrays-broadcasting.ipynb) | Learn about computation on arrays: broadcasting in NumPy. |
| [Boolean-Arrays-and-Masks](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.06-Boolean-Arrays-and-Masks.ipynb) | Learn about comparisons, masks, and boolean logic in NumPy. |
| [Fancy-Indexing](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.07-Fancy-Indexing.ipynb) | Learn about fancy indexing in NumPy. |
| [Sorting](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.08-Sorting.ipynb) | Learn about sorting arrays in NumPy. |
| [Structured-Data-NumPy](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.09-Structured-Data-NumPy.ipynb) | Learn about structured data: NumPy's structured arrays. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/python.png">
</p>
## python-data
IPython Notebook(s) demonstrating Python functionality geared towards data analysis.
| Notebook | Description |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| [data structures](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/structs.ipynb) | Learn Python basics with tuples, lists, dicts, sets. |
| [data structure utilities](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/structs_utils.ipynb) | Learn Python operations such as slice, range, xrange, bisect, sort, sorted, reversed, enumerate, zip, list comprehensions. |
| [functions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/functions.ipynb) | Learn about more advanced Python features: Functions as objects, lambda functions, closures, *args, **kwargs currying, generators, generator expressions, itertools. |
| [datetime](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/datetime.ipynb) | Learn how to work with Python dates and times: datetime, strftime, strptime, timedelta. |
| [logging](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/logs.ipynb) | Learn about Python logging with RotatingFileHandler and TimedRotatingFileHandler. |
| [pdb](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/pdb.ipynb) | Learn how to debug in Python with the interactive source code debugger. |
| [unit tests](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/unit_tests.ipynb) | Learn how to test in Python with Nose unit tests. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
</p>
## kaggle-and-business-analyses
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
| Notebook | Description |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic.  Learn data cleaning, exploratory data analysis, and machine learning. |
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn.  Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors.  Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/spark.png">
</p>
## spark
IPython Notebook(s) demonstrating spark and HDFS functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| [spark](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/spark/spark.ipynb) | In-memory cluster computing framework, up to 100 times faster for certain applications and is well suited for machine learning algorithms. |
| [hdfs](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/spark/hdfs.ipynb) | Reliably stores very large files across machines in a large cluster. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/mrjob.png">
</p>
## mapreduce-python
IPython Notebook(s) demonstrating Hadoop MapReduce with mrjob functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| [mapreduce-python](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/mapreduce/mapreduce-python.ipynb) | Runs MapReduce jobs in Python, executing jobs locally or on Hadoop clusters. Demonstrates Hadoop Streaming in Python code with unit test and [mrjob](https://github.com/Yelp/mrjob) config file to analyze Amazon S3 bucket logs on Elastic MapReduce.  [Disco](https://github.com/discoproject/disco/) is another python-based alternative.|
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/aws.png">
</p>
## aws
IPython Notebook(s) demonstrating Amazon Web Services (AWS) and AWS tools functionality.
Also check out:
* [SAWS](https://github.com/donnemartin/saws): A Supercharged AWS command line interface (CLI).
* [Awesome AWS](https://github.com/donnemartin/awesome-aws): A curated list of libraries, open source repos, guides, blogs, and other resources.
| Notebook | Description |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [boto](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#Boto) | Official AWS SDK for Python. |
| [s3cmd](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#s3cmd) | Interacts with S3 through the command line. |
| [s3distcp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#s3distcp) | Combines smaller files and aggregates them together by taking in a pattern and target file.  S3DistCp can also be used to transfer large volumes of data from S3 to your Hadoop cluster. |
| [s3-parallel-put](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#s3-parallel-put) | Uploads multiple files to S3 in parallel. |
| [redshift](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#redshift) | Acts as a fast data warehouse built on top of technology from massive parallel processing (MPP). |
| [kinesis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#kinesis) | Streams data in real time with the ability to process thousands of data streams per second. |
| [lambda](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#lambda) | Runs code in response to events, automatically managing compute resources. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/commands.png">
</p>
## commands
IPython Notebook(s) demonstrating various command lines for Linux, Git, etc.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [linux](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/linux.ipynb) | Unix-like and mostly POSIX-compliant computer operating system.  Disk usage, splitting files, grep, sed, curl, viewing running processes, terminal syntax highlighting, and Vim.|
| [anaconda](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#anaconda) | Distribution of the Python programming language for large-scale data processing, predictive analytics, and scientific computing, that aims to simplify package management and deployment. |
| [ipython notebook](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#ipython-notebook) | Web-based interactive computational environment where you can combine code execution, text, mathematics, plots and rich media into a single document. |
| [git](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#git) | Distributed revision control system with an emphasis on speed, data integrity, and support for distributed, non-linear workflows. |
| [ruby](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#ruby) | Used to interact with the AWS command line and for Jekyll, a blog framework that can be hosted on GitHub Pages. |
| [jekyll](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#jekyll) | Simple, blog-aware, static site generator for personal, project, or organization sites.  Renders Markdown or Textile and Liquid templates, and produces a complete, static website ready to be served by Apache HTTP Server, Nginx or another web server. |
| [pelican](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#pelican) | Python-based alternative to Jekyll. |
| [django](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#django) | High-level Python Web framework that encourages rapid development and clean, pragmatic design. It can be useful to share reports/analyses and for blogging. Lighter-weight alternatives include [Pyramid](https://github.com/Pylons/pyramid), [Flask](https://github.com/pallets/flask), [Tornado](https://github.com/tornadoweb/tornado), and [Bottle](https://github.com/bottlepy/bottle).
## misc
IPython Notebook(s) demonstrating miscellaneous functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [regex](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/misc/regex.ipynb) | Regular expression cheat sheet useful in data wrangling.|
[algorithmia](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/misc/Algorithmia.ipynb) | Algorithmia is a marketplace for algorithms. This notebook showcases 4 different algorithms: Face Detection, Content Summarizer, Latent Dirichlet Allocation and Optical Character Recognition.|
## notebook-installation
### anaconda
Anaconda is a free distribution of the Python programming language for large-scale data processing, predictive analytics, and scientific computing that aims to simplify package management and deployment.
Follow instructions to install [Anaconda](https://docs.continuum.io/anaconda/install) or the more lightweight [miniconda](http://conda.pydata.org/miniconda.html).
### dev-setup
For detailed instructions, scripts, and tools to set up your development environment for data analysis, check out the [dev-setup](https://github.com/donnemartin/dev-setup) repo.
### running-notebooks
To view interactive content or to modify elements within the IPython notebooks, you must first clone or download the repository then run the notebook.  More information on IPython Notebooks can be found [here.](http://ipython.org/notebook.html)
    $ git clone https://github.com/donnemartin/data-science-ipython-notebooks.git
    $ cd data-science-ipython-notebooks
    $ jupyter notebook
Notebooks tested with Python 2.7.x.
## credits
* [Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython](http://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1449319793) by Wes McKinney
* [PyCon 2015 Scikit-learn Tutorial](https://github.com/jakevdp/sklearn_pycon2015) by Jake VanderPlas
* [Python Data Science Handbook](https://github.com/jakevdp/PythonDataScienceHandbook) by Jake VanderPlas
* [Parallel Machine Learning with scikit-learn and IPython](https://github.com/ogrisel/parallel_ml_tutorial) by Olivier Grisel
* [Statistical Interference Using Computational Methods in Python](https://github.com/AllenDowney/CompStats) by Allen Downey
* [TensorFlow Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien
* [TensorFlow Tutorials](https://github.com/pkmital/tensorflow_tutorials) by Parag K Mital
* [TensorFlow Tutorials](https://github.com/nlintz/TensorFlow-Tutorials) by Nathan Lintz
* [TensorFlow Tutorials](https://github.com/alrojo/tensorflow-tutorial) by Alexander R Johansen
* [TensorFlow Book](https://github.com/BinRoot/TensorFlow-Book) by Nishant Shukla
* [Summer School 2015](https://github.com/mila-udem/summerschool2015) by mila-udem
* [Keras tutorials](https://github.com/leriomaggio/deep-learning-keras-tensorflow) by Valerio Maggio
* [Kaggle](https://www.kaggle.com/)
* [Yhat Blog](http://blog.yhat.com/)
## contributing
Contributions are welcome!  For bug reports or requests please [submit an issue](https://github.com/donnemartin/data-science-ipython-notebooks/issues).
## contact-info
Feel free to contact me to discuss any issues, questions, or comments.
* Email: [donne.martin@gmail.com](mailto:donne.martin@gmail.com)
* Twitter: [@donne_martin](https://twitter.com/donne_martin)
* GitHub: [donnemartin](https://github.com/donnemartin)
* LinkedIn: [donnemartin](https://www.linkedin.com/in/donnemartin)
* Website: [donnemartin.com](http://donnemartin.com)
## license
This repository contains a variety of content; some developed by Donne Martin, and some from third-parties.  The third-party content is distributed under the license provided by those parties.
The content developed by Donne Martin is distributed under the following license:
*I am providing code and resources in this repository to you under an open source license.  Because this is my personal repository, the license you receive to my code and resources is from me and not my employer (Facebook).*
    Copyright 2015 Donne Martin
    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at
       http://www.apache.org/licenses/LICENSE-2.0
    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.

%package -n python3-tql
Summary:	description
Provides:	python-tql
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-tql
- [mlcrate](https://github.com/mxbi/mlcrate)
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/README_1200x800.gif">
</p>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/coversmall_alt.png">
  <br/>
</p>
# data-science-ipython-notebooks
## Index
* [deep-learning](#deep-learning)
    * [tensorflow](#tensor-flow-tutorials)
    * [theano](#theano-tutorials)
    * [keras](#keras-tutorials)
    * [caffe](#deep-learning-misc)
* [scikit-learn](#scikit-learn)
* [statistical-inference-scipy](#statistical-inference-scipy)
* [pandas](#pandas)
* [matplotlib](#matplotlib)
* [numpy](#numpy)
* [python-data](#python-data)
* [kaggle-and-business-analyses](#kaggle-and-business-analyses)
* [spark](#spark)
* [mapreduce-python](#mapreduce-python)
* [amazon web services](#aws)
* [command lines](#commands)
* [misc](#misc)
* [notebook-installation](#notebook-installation)
* [credits](#credits)
* [contributing](#contributing)
* [contact-info](#contact-info)
* [license](#license)
<br/>
<p align="center">
  <img src="http://i.imgur.com/ZhKXrKZ.png">
</p>
## deep-learning
IPython Notebook(s) demonstrating deep learning functionality.
<br/>
<p align="center">
  <img src="https://avatars0.githubusercontent.com/u/15658638?v=3&s=100">
</p>
### tensor-flow-tutorials
Additional TensorFlow tutorials:
* [pkmital/tensorflow_tutorials](https://github.com/pkmital/tensorflow_tutorials)
* [nlintz/TensorFlow-Tutorials](https://github.com/nlintz/TensorFlow-Tutorials)
* [alrojo/tensorflow-tutorial](https://github.com/alrojo/tensorflow-tutorial)
* [BinRoot/TensorFlow-Book](https://github.com/BinRoot/TensorFlow-Book)
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [tsf-basics](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/1_intro/basic_operations.ipynb) | Learn basic operations in TensorFlow, a library for various kinds of perceptual and language understanding tasks from Google. |
| [tsf-linear](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/2_basic_classifiers/linear_regression.ipynb) | Implement linear regression in TensorFlow. |
| [tsf-logistic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/2_basic_classifiers/logistic_regression.ipynb) | Implement logistic regression in TensorFlow. |
| [tsf-nn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/2_basic_classifiers/nearest_neighbor.ipynb) | Implement nearest neighboars in TensorFlow. |
| [tsf-alex](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/alexnet.ipynb) | Implement AlexNet in TensorFlow. |
| [tsf-cnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/convolutional_network.ipynb) | Implement convolutional neural networks in TensorFlow. |
| [tsf-mlp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/multilayer_perceptron.ipynb) | Implement multilayer perceptrons in TensorFlow. |
| [tsf-rnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/recurrent_network.ipynb) | Implement recurrent neural networks in TensorFlow. |
| [tsf-gpu](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/4_multi_gpu/multigpu_basics.ipynb) | Learn about basic multi-GPU computation in TensorFlow. |
| [tsf-gviz](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/5_ui/graph_visualization.ipynb) | Learn about graph visualization in TensorFlow. |
| [tsf-lviz](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/5_ui/loss_visualization.ipynb) | Learn about loss visualization in TensorFlow. |
### tensor-flow-exercises
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [tsf-not-mnist](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/1_notmnist.ipynb) | Learn simple data curation by creating a pickle with formatted datasets for training, development and testing in TensorFlow. |
| [tsf-fully-connected](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/2_fullyconnected.ipynb) | Progressively train deeper and more accurate models using logistic regression and neural networks in TensorFlow. |
| [tsf-regularization](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/3_regularization.ipynb) | Explore regularization techniques by training fully connected networks to classify notMNIST characters in TensorFlow. |
| [tsf-convolutions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/4_convolutions.ipynb) | Create convolutional neural networks in TensorFlow. |
| [tsf-word2vec](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/5_word2vec.ipynb) | Train a skip-gram model over Text8 data in TensorFlow. |
| [tsf-lstm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/6_lstm.ipynb) | Train a LSTM character model over Text8 data in TensorFlow. |
<br/>
<p align="center">
  <img src="http://www.deeplearning.net/software/theano/_static/theano_logo_allblue_200x46.png">
</p>
### theano-tutorials
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [theano-intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/intro_theano.ipynb) | Intro to Theano, which allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation. |
| [theano-scan](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/scan_tutorial/scan_tutorial.ipynb) | Learn scans, a mechanism to perform loops in a Theano graph. |
| [theano-logistic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/logistic_regression.ipynb) | Implement logistic regression in Theano. |
| [theano-rnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/rnn_tutorial/simple_rnn.ipynb) | Implement recurrent neural networks in Theano. |
| [theano-mlp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/theano_mlp/theano_mlp.ipynb) | Implement multilayer perceptrons in Theano. |
<br/>
<p align="center">
  <img src="http://i.imgur.com/L45Q8c2.jpg">
</p>
### keras-tutorials
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| keras | Keras is an open source neural network library written in Python. It is capable of running on top of either Tensorflow or Theano. |
| [setup](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/0.%20Preamble.ipynb) | Learn about the tutorial goals and how to set up your Keras environment. |
| [intro-deep-learning-ann](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/1.1%20Introduction%20-%20Deep%20Learning%20and%20ANN.ipynb) | Get an intro to deep learning with Keras and Artificial Neural Networks (ANN). |
| [theano](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/1.2%20Introduction%20-%20Theano.ipynb) | Learn about Theano by working with weights matrices and gradients. |
| [keras-otto](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/1.3%20Introduction%20-%20Keras.ipynb) | Learn about Keras by looking at the Kaggle Otto challenge. |
| [ann-mnist](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/1.4%20%28Extra%29%20A%20Simple%20Implementation%20of%20ANN%20for%20MNIST.ipynb) | Review a simple implementation of ANN for MNIST using Keras. |
| [conv-nets](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/2.1%20Supervised%20Learning%20-%20ConvNets.ipynb) | Learn about Convolutional Neural Networks (CNNs) with Keras. |
| [conv-net-1](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/2.2.1%20Supervised%20Learning%20-%20ConvNet%20HandsOn%20Part%20I.ipynb) | Recognize handwritten digits from MNIST using Keras - Part 1. |
| [conv-net-2](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/2.2.2%20Supervised%20Learning%20-%20ConvNet%20HandsOn%20Part%20II.ipynb) | Recognize handwritten digits from MNIST using Keras - Part 2. |
| [keras-models](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/2.3%20Supervised%20Learning%20-%20Famous%20Models%20with%20Keras.ipynb) | Use pre-trained models such as VGG16, VGG19, ResNet50, and Inception v3 with Keras. |
| [auto-encoders](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/3.1%20Unsupervised%20Learning%20-%20AutoEncoders%20and%20Embeddings.ipynb) | Learn about Autoencoders with Keras. |
| [rnn-lstm](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/3.2%20RNN%20and%20LSTM.ipynb) | Learn about Recurrent Neural Networks (RNNs) with Keras. |
| [lstm-sentence-gen](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/3.3%20%28Extra%29%20LSTM%20for%20Sentence%20Generation.ipynb) |  Learn about RNNs using Long Short Term Memory (LSTM) networks with Keras. |
### deep-learning-misc
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [deep-dream](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/deep-dream/dream.ipynb) | Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scikitlearn.png">
</p>
## scikit-learn
IPython Notebook(s) demonstrating scikit-learn functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb) | Intro notebook to scikit-learn.  Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
| [knn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb#K-Nearest-Neighbors-Classifier) | Implement k-nearest neighbors in scikit-learn. |
| [linear-reg](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-linear-reg.ipynb) | Implement linear regression in scikit-learn. |
| [svm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-svm.ipynb) | Implement support vector machine classifiers with and without kernels in scikit-learn. |
| [random-forest](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-random-forest.ipynb) | Implement random forest classifiers and regressors in scikit-learn. |
| [k-means](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-k-means.ipynb) | Implement k-means clustering in scikit-learn. |
| [pca](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-pca.ipynb) | Implement principal component analysis in scikit-learn. |
| [gmm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-gmm.ipynb) | Implement Gaussian mixture models in scikit-learn. |
| [validation](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-validation.ipynb) | Implement validation and model selection in scikit-learn. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scipy.png">
</p>
## statistical-inference-scipy
IPython Notebook(s) demonstrating statistical inference with SciPy functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| scipy | SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy extension of Python. It adds significant power to the interactive Python session by providing the user with high-level commands and classes for manipulating and visualizing data. |
| [effect-size](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scipy/effect_size.ipynb) | Explore statistics that quantify effect size by analyzing the difference in height between men and women.  Uses data from the Behavioral Risk Factor Surveillance System (BRFSS) to estimate the mean and standard deviation of height for adult women and men in the United States. |
| [sampling](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scipy/sampling.ipynb) | Explore random sampling by analyzing the average weight of men and women in the United States using BRFSS data. |
| [hypothesis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scipy/hypothesis.ipynb) | Explore hypothesis testing by analyzing the difference of first-born babies compared with others. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/pandas.png">
</p>
## pandas
IPython Notebook(s) demonstrating pandas functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [pandas](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb) | Software library written for data manipulation and analysis in Python. Offers data structures and operations for manipulating numerical tables and time series. |
| [github-data-wrangling](https://github.com/donnemartin/viz/blob/master/githubstats/data_wrangling.ipynb) | Learn how to load, clean, merge, and feature engineer by analyzing GitHub data from the [`Viz`](https://github.com/donnemartin/viz) repo. |
| [Introduction-to-Pandas](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.00-Introduction-to-Pandas.ipynb) | Introduction to Pandas. |
| [Introducing-Pandas-Objects](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.01-Introducing-Pandas-Objects.ipynb) | Learn about Pandas objects. |
| [Data Indexing and Selection](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.02-Data-Indexing-and-Selection.ipynb) | Learn about data indexing and selection in Pandas. |
| [Operations-in-Pandas](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.03-Operations-in-Pandas.ipynb) | Learn about operating on data in Pandas. |
| [Missing-Values](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.04-Missing-Values.ipynb) | Learn about handling missing data in Pandas. |
| [Hierarchical-Indexing](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.05-Hierarchical-Indexing.ipynb) | Learn about hierarchical indexing in Pandas. |
| [Concat-And-Append](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.06-Concat-And-Append.ipynb) | Learn about combining datasets: concat and append in Pandas. |
| [Merge-and-Join](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.07-Merge-and-Join.ipynb) | Learn about combining datasets: merge and join in Pandas. |
| [Aggregation-and-Grouping](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.08-Aggregation-and-Grouping.ipynb) | Learn about aggregation and grouping in Pandas. |
| [Pivot-Tables](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.09-Pivot-Tables.ipynb) | Learn about pivot tables in Pandas. |
| [Working-With-Strings](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.10-Working-With-Strings.ipynb) | Learn about vectorized string operations in Pandas. |
| [Working-with-Time-Series](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.11-Working-with-Time-Series.ipynb) | Learn about working with time series in pandas. |
| [Performance-Eval-and-Query](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.12-Performance-Eval-and-Query.ipynb) | Learn about high-performance Pandas: eval() and query() in Pandas. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/matplotlib.png">
</p>
## matplotlib
IPython Notebook(s) demonstrating matplotlib functionality.
| Notebook | Description |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| [matplotlib](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb) | Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. |
| [matplotlib-applied](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib-applied.ipynb) | Apply matplotlib visualizations to Kaggle competitions for exploratory data analysis.  Learn how to create bar plots, histograms, subplot2grid, normalized plots, scatter plots, subplots, and kernel density estimation plots. |
| [Introduction-To-Matplotlib](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.00-Introduction-To-Matplotlib.ipynb) | Introduction to Matplotlib. |
| [Simple-Line-Plots](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.01-Simple-Line-Plots.ipynb) | Learn about simple line plots in Matplotlib. |
| [Simple-Scatter-Plots](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.02-Simple-Scatter-Plots.ipynb) | Learn about simple scatter plots in Matplotlib. |
| [Errorbars.ipynb](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.03-Errorbars.ipynb) | Learn about visualizing errors in Matplotlib. |
| [Density-and-Contour-Plots](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.04-Density-and-Contour-Plots.ipynb) | Learn about density and contour plots in Matplotlib. |
| [Histograms-and-Binnings](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.05-Histograms-and-Binnings.ipynb) | Learn about histograms, binnings, and density in Matplotlib. |
| [Customizing-Legends](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.06-Customizing-Legends.ipynb) | Learn about customizing plot legends in Matplotlib. |
| [Customizing-Colorbars](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.07-Customizing-Colorbars.ipynb) | Learn about customizing colorbars in Matplotlib. |
| [Multiple-Subplots](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.08-Multiple-Subplots.ipynb) | Learn about multiple subplots in Matplotlib. |
| [Text-and-Annotation](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.09-Text-and-Annotation.ipynb) | Learn about text and annotation in Matplotlib. |
| [Customizing-Ticks](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.10-Customizing-Ticks.ipynb) | Learn about customizing ticks in Matplotlib. |
| [Settings-and-Stylesheets](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.11-Settings-and-Stylesheets.ipynb) | Learn about customizing Matplotlib: configurations and stylesheets. |
| [Three-Dimensional-Plotting](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.12-Three-Dimensional-Plotting.ipynb) | Learn about three-dimensional plotting in Matplotlib. |
| [Geographic-Data-With-Basemap](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.13-Geographic-Data-With-Basemap.ipynb) | Learn about geographic data with basemap in Matplotlib. |
| [Visualization-With-Seaborn](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.14-Visualization-With-Seaborn.ipynb) | Learn about visualization with Seaborn. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/numpy.png">
</p>
## numpy
IPython Notebook(s) demonstrating NumPy functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [numpy](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb) | Adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
| [Introduction-to-NumPy](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.00-Introduction-to-NumPy.ipynb) | Introduction to NumPy. |
| [Understanding-Data-Types](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.01-Understanding-Data-Types.ipynb) | Learn about data types in Python. |
| [The-Basics-Of-NumPy-Arrays](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.02-The-Basics-Of-NumPy-Arrays.ipynb) | Learn about the basics of NumPy arrays. |
| [Computation-on-arrays-ufuncs](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.03-Computation-on-arrays-ufuncs.ipynb) | Learn about computations on NumPy arrays: universal functions. |
| [Computation-on-arrays-aggregates](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.04-Computation-on-arrays-aggregates.ipynb) | Learn about aggregations: min, max, and everything in between in NumPy. |
| [Computation-on-arrays-broadcasting](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.05-Computation-on-arrays-broadcasting.ipynb) | Learn about computation on arrays: broadcasting in NumPy. |
| [Boolean-Arrays-and-Masks](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.06-Boolean-Arrays-and-Masks.ipynb) | Learn about comparisons, masks, and boolean logic in NumPy. |
| [Fancy-Indexing](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.07-Fancy-Indexing.ipynb) | Learn about fancy indexing in NumPy. |
| [Sorting](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.08-Sorting.ipynb) | Learn about sorting arrays in NumPy. |
| [Structured-Data-NumPy](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.09-Structured-Data-NumPy.ipynb) | Learn about structured data: NumPy's structured arrays. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/python.png">
</p>
## python-data
IPython Notebook(s) demonstrating Python functionality geared towards data analysis.
| Notebook | Description |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| [data structures](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/structs.ipynb) | Learn Python basics with tuples, lists, dicts, sets. |
| [data structure utilities](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/structs_utils.ipynb) | Learn Python operations such as slice, range, xrange, bisect, sort, sorted, reversed, enumerate, zip, list comprehensions. |
| [functions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/functions.ipynb) | Learn about more advanced Python features: Functions as objects, lambda functions, closures, *args, **kwargs currying, generators, generator expressions, itertools. |
| [datetime](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/datetime.ipynb) | Learn how to work with Python dates and times: datetime, strftime, strptime, timedelta. |
| [logging](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/logs.ipynb) | Learn about Python logging with RotatingFileHandler and TimedRotatingFileHandler. |
| [pdb](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/pdb.ipynb) | Learn how to debug in Python with the interactive source code debugger. |
| [unit tests](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/unit_tests.ipynb) | Learn how to test in Python with Nose unit tests. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
</p>
## kaggle-and-business-analyses
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
| Notebook | Description |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic.  Learn data cleaning, exploratory data analysis, and machine learning. |
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn.  Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors.  Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/spark.png">
</p>
## spark
IPython Notebook(s) demonstrating spark and HDFS functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| [spark](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/spark/spark.ipynb) | In-memory cluster computing framework, up to 100 times faster for certain applications and is well suited for machine learning algorithms. |
| [hdfs](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/spark/hdfs.ipynb) | Reliably stores very large files across machines in a large cluster. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/mrjob.png">
</p>
## mapreduce-python
IPython Notebook(s) demonstrating Hadoop MapReduce with mrjob functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| [mapreduce-python](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/mapreduce/mapreduce-python.ipynb) | Runs MapReduce jobs in Python, executing jobs locally or on Hadoop clusters. Demonstrates Hadoop Streaming in Python code with unit test and [mrjob](https://github.com/Yelp/mrjob) config file to analyze Amazon S3 bucket logs on Elastic MapReduce.  [Disco](https://github.com/discoproject/disco/) is another python-based alternative.|
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/aws.png">
</p>
## aws
IPython Notebook(s) demonstrating Amazon Web Services (AWS) and AWS tools functionality.
Also check out:
* [SAWS](https://github.com/donnemartin/saws): A Supercharged AWS command line interface (CLI).
* [Awesome AWS](https://github.com/donnemartin/awesome-aws): A curated list of libraries, open source repos, guides, blogs, and other resources.
| Notebook | Description |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [boto](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#Boto) | Official AWS SDK for Python. |
| [s3cmd](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#s3cmd) | Interacts with S3 through the command line. |
| [s3distcp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#s3distcp) | Combines smaller files and aggregates them together by taking in a pattern and target file.  S3DistCp can also be used to transfer large volumes of data from S3 to your Hadoop cluster. |
| [s3-parallel-put](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#s3-parallel-put) | Uploads multiple files to S3 in parallel. |
| [redshift](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#redshift) | Acts as a fast data warehouse built on top of technology from massive parallel processing (MPP). |
| [kinesis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#kinesis) | Streams data in real time with the ability to process thousands of data streams per second. |
| [lambda](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#lambda) | Runs code in response to events, automatically managing compute resources. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/commands.png">
</p>
## commands
IPython Notebook(s) demonstrating various command lines for Linux, Git, etc.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [linux](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/linux.ipynb) | Unix-like and mostly POSIX-compliant computer operating system.  Disk usage, splitting files, grep, sed, curl, viewing running processes, terminal syntax highlighting, and Vim.|
| [anaconda](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#anaconda) | Distribution of the Python programming language for large-scale data processing, predictive analytics, and scientific computing, that aims to simplify package management and deployment. |
| [ipython notebook](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#ipython-notebook) | Web-based interactive computational environment where you can combine code execution, text, mathematics, plots and rich media into a single document. |
| [git](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#git) | Distributed revision control system with an emphasis on speed, data integrity, and support for distributed, non-linear workflows. |
| [ruby](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#ruby) | Used to interact with the AWS command line and for Jekyll, a blog framework that can be hosted on GitHub Pages. |
| [jekyll](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#jekyll) | Simple, blog-aware, static site generator for personal, project, or organization sites.  Renders Markdown or Textile and Liquid templates, and produces a complete, static website ready to be served by Apache HTTP Server, Nginx or another web server. |
| [pelican](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#pelican) | Python-based alternative to Jekyll. |
| [django](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#django) | High-level Python Web framework that encourages rapid development and clean, pragmatic design. It can be useful to share reports/analyses and for blogging. Lighter-weight alternatives include [Pyramid](https://github.com/Pylons/pyramid), [Flask](https://github.com/pallets/flask), [Tornado](https://github.com/tornadoweb/tornado), and [Bottle](https://github.com/bottlepy/bottle).
## misc
IPython Notebook(s) demonstrating miscellaneous functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [regex](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/misc/regex.ipynb) | Regular expression cheat sheet useful in data wrangling.|
[algorithmia](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/misc/Algorithmia.ipynb) | Algorithmia is a marketplace for algorithms. This notebook showcases 4 different algorithms: Face Detection, Content Summarizer, Latent Dirichlet Allocation and Optical Character Recognition.|
## notebook-installation
### anaconda
Anaconda is a free distribution of the Python programming language for large-scale data processing, predictive analytics, and scientific computing that aims to simplify package management and deployment.
Follow instructions to install [Anaconda](https://docs.continuum.io/anaconda/install) or the more lightweight [miniconda](http://conda.pydata.org/miniconda.html).
### dev-setup
For detailed instructions, scripts, and tools to set up your development environment for data analysis, check out the [dev-setup](https://github.com/donnemartin/dev-setup) repo.
### running-notebooks
To view interactive content or to modify elements within the IPython notebooks, you must first clone or download the repository then run the notebook.  More information on IPython Notebooks can be found [here.](http://ipython.org/notebook.html)
    $ git clone https://github.com/donnemartin/data-science-ipython-notebooks.git
    $ cd data-science-ipython-notebooks
    $ jupyter notebook
Notebooks tested with Python 2.7.x.
## credits
* [Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython](http://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1449319793) by Wes McKinney
* [PyCon 2015 Scikit-learn Tutorial](https://github.com/jakevdp/sklearn_pycon2015) by Jake VanderPlas
* [Python Data Science Handbook](https://github.com/jakevdp/PythonDataScienceHandbook) by Jake VanderPlas
* [Parallel Machine Learning with scikit-learn and IPython](https://github.com/ogrisel/parallel_ml_tutorial) by Olivier Grisel
* [Statistical Interference Using Computational Methods in Python](https://github.com/AllenDowney/CompStats) by Allen Downey
* [TensorFlow Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien
* [TensorFlow Tutorials](https://github.com/pkmital/tensorflow_tutorials) by Parag K Mital
* [TensorFlow Tutorials](https://github.com/nlintz/TensorFlow-Tutorials) by Nathan Lintz
* [TensorFlow Tutorials](https://github.com/alrojo/tensorflow-tutorial) by Alexander R Johansen
* [TensorFlow Book](https://github.com/BinRoot/TensorFlow-Book) by Nishant Shukla
* [Summer School 2015](https://github.com/mila-udem/summerschool2015) by mila-udem
* [Keras tutorials](https://github.com/leriomaggio/deep-learning-keras-tensorflow) by Valerio Maggio
* [Kaggle](https://www.kaggle.com/)
* [Yhat Blog](http://blog.yhat.com/)
## contributing
Contributions are welcome!  For bug reports or requests please [submit an issue](https://github.com/donnemartin/data-science-ipython-notebooks/issues).
## contact-info
Feel free to contact me to discuss any issues, questions, or comments.
* Email: [donne.martin@gmail.com](mailto:donne.martin@gmail.com)
* Twitter: [@donne_martin](https://twitter.com/donne_martin)
* GitHub: [donnemartin](https://github.com/donnemartin)
* LinkedIn: [donnemartin](https://www.linkedin.com/in/donnemartin)
* Website: [donnemartin.com](http://donnemartin.com)
## license
This repository contains a variety of content; some developed by Donne Martin, and some from third-parties.  The third-party content is distributed under the license provided by those parties.
The content developed by Donne Martin is distributed under the following license:
*I am providing code and resources in this repository to you under an open source license.  Because this is my personal repository, the license you receive to my code and resources is from me and not my employer (Facebook).*
    Copyright 2015 Donne Martin
    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at
       http://www.apache.org/licenses/LICENSE-2.0
    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.

%package help
Summary:	Development documents and examples for tql
Provides:	python3-tql-doc
%description help
- [mlcrate](https://github.com/mxbi/mlcrate)
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/README_1200x800.gif">
</p>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/coversmall_alt.png">
  <br/>
</p>
# data-science-ipython-notebooks
## Index
* [deep-learning](#deep-learning)
    * [tensorflow](#tensor-flow-tutorials)
    * [theano](#theano-tutorials)
    * [keras](#keras-tutorials)
    * [caffe](#deep-learning-misc)
* [scikit-learn](#scikit-learn)
* [statistical-inference-scipy](#statistical-inference-scipy)
* [pandas](#pandas)
* [matplotlib](#matplotlib)
* [numpy](#numpy)
* [python-data](#python-data)
* [kaggle-and-business-analyses](#kaggle-and-business-analyses)
* [spark](#spark)
* [mapreduce-python](#mapreduce-python)
* [amazon web services](#aws)
* [command lines](#commands)
* [misc](#misc)
* [notebook-installation](#notebook-installation)
* [credits](#credits)
* [contributing](#contributing)
* [contact-info](#contact-info)
* [license](#license)
<br/>
<p align="center">
  <img src="http://i.imgur.com/ZhKXrKZ.png">
</p>
## deep-learning
IPython Notebook(s) demonstrating deep learning functionality.
<br/>
<p align="center">
  <img src="https://avatars0.githubusercontent.com/u/15658638?v=3&s=100">
</p>
### tensor-flow-tutorials
Additional TensorFlow tutorials:
* [pkmital/tensorflow_tutorials](https://github.com/pkmital/tensorflow_tutorials)
* [nlintz/TensorFlow-Tutorials](https://github.com/nlintz/TensorFlow-Tutorials)
* [alrojo/tensorflow-tutorial](https://github.com/alrojo/tensorflow-tutorial)
* [BinRoot/TensorFlow-Book](https://github.com/BinRoot/TensorFlow-Book)
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [tsf-basics](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/1_intro/basic_operations.ipynb) | Learn basic operations in TensorFlow, a library for various kinds of perceptual and language understanding tasks from Google. |
| [tsf-linear](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/2_basic_classifiers/linear_regression.ipynb) | Implement linear regression in TensorFlow. |
| [tsf-logistic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/2_basic_classifiers/logistic_regression.ipynb) | Implement logistic regression in TensorFlow. |
| [tsf-nn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/2_basic_classifiers/nearest_neighbor.ipynb) | Implement nearest neighboars in TensorFlow. |
| [tsf-alex](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/alexnet.ipynb) | Implement AlexNet in TensorFlow. |
| [tsf-cnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/convolutional_network.ipynb) | Implement convolutional neural networks in TensorFlow. |
| [tsf-mlp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/multilayer_perceptron.ipynb) | Implement multilayer perceptrons in TensorFlow. |
| [tsf-rnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/3_neural_networks/recurrent_network.ipynb) | Implement recurrent neural networks in TensorFlow. |
| [tsf-gpu](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/4_multi_gpu/multigpu_basics.ipynb) | Learn about basic multi-GPU computation in TensorFlow. |
| [tsf-gviz](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/5_ui/graph_visualization.ipynb) | Learn about graph visualization in TensorFlow. |
| [tsf-lviz](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/notebooks/5_ui/loss_visualization.ipynb) | Learn about loss visualization in TensorFlow. |
### tensor-flow-exercises
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [tsf-not-mnist](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/1_notmnist.ipynb) | Learn simple data curation by creating a pickle with formatted datasets for training, development and testing in TensorFlow. |
| [tsf-fully-connected](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/2_fullyconnected.ipynb) | Progressively train deeper and more accurate models using logistic regression and neural networks in TensorFlow. |
| [tsf-regularization](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/3_regularization.ipynb) | Explore regularization techniques by training fully connected networks to classify notMNIST characters in TensorFlow. |
| [tsf-convolutions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/4_convolutions.ipynb) | Create convolutional neural networks in TensorFlow. |
| [tsf-word2vec](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/5_word2vec.ipynb) | Train a skip-gram model over Text8 data in TensorFlow. |
| [tsf-lstm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/6_lstm.ipynb) | Train a LSTM character model over Text8 data in TensorFlow. |
<br/>
<p align="center">
  <img src="http://www.deeplearning.net/software/theano/_static/theano_logo_allblue_200x46.png">
</p>
### theano-tutorials
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [theano-intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/intro_theano.ipynb) | Intro to Theano, which allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation. |
| [theano-scan](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/scan_tutorial/scan_tutorial.ipynb) | Learn scans, a mechanism to perform loops in a Theano graph. |
| [theano-logistic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/logistic_regression.ipynb) | Implement logistic regression in Theano. |
| [theano-rnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/rnn_tutorial/simple_rnn.ipynb) | Implement recurrent neural networks in Theano. |
| [theano-mlp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/theano_mlp/theano_mlp.ipynb) | Implement multilayer perceptrons in Theano. |
<br/>
<p align="center">
  <img src="http://i.imgur.com/L45Q8c2.jpg">
</p>
### keras-tutorials
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| keras | Keras is an open source neural network library written in Python. It is capable of running on top of either Tensorflow or Theano. |
| [setup](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/0.%20Preamble.ipynb) | Learn about the tutorial goals and how to set up your Keras environment. |
| [intro-deep-learning-ann](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/1.1%20Introduction%20-%20Deep%20Learning%20and%20ANN.ipynb) | Get an intro to deep learning with Keras and Artificial Neural Networks (ANN). |
| [theano](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/1.2%20Introduction%20-%20Theano.ipynb) | Learn about Theano by working with weights matrices and gradients. |
| [keras-otto](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/1.3%20Introduction%20-%20Keras.ipynb) | Learn about Keras by looking at the Kaggle Otto challenge. |
| [ann-mnist](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/1.4%20%28Extra%29%20A%20Simple%20Implementation%20of%20ANN%20for%20MNIST.ipynb) | Review a simple implementation of ANN for MNIST using Keras. |
| [conv-nets](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/2.1%20Supervised%20Learning%20-%20ConvNets.ipynb) | Learn about Convolutional Neural Networks (CNNs) with Keras. |
| [conv-net-1](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/2.2.1%20Supervised%20Learning%20-%20ConvNet%20HandsOn%20Part%20I.ipynb) | Recognize handwritten digits from MNIST using Keras - Part 1. |
| [conv-net-2](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/2.2.2%20Supervised%20Learning%20-%20ConvNet%20HandsOn%20Part%20II.ipynb) | Recognize handwritten digits from MNIST using Keras - Part 2. |
| [keras-models](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/2.3%20Supervised%20Learning%20-%20Famous%20Models%20with%20Keras.ipynb) | Use pre-trained models such as VGG16, VGG19, ResNet50, and Inception v3 with Keras. |
| [auto-encoders](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/3.1%20Unsupervised%20Learning%20-%20AutoEncoders%20and%20Embeddings.ipynb) | Learn about Autoencoders with Keras. |
| [rnn-lstm](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/3.2%20RNN%20and%20LSTM.ipynb) | Learn about Recurrent Neural Networks (RNNs) with Keras. |
| [lstm-sentence-gen](https://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/keras-tutorial/3.3%20%28Extra%29%20LSTM%20for%20Sentence%20Generation.ipynb) |  Learn about RNNs using Long Short Term Memory (LSTM) networks with Keras. |
### deep-learning-misc
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [deep-dream](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/deep-dream/dream.ipynb) | Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scikitlearn.png">
</p>
## scikit-learn
IPython Notebook(s) demonstrating scikit-learn functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb) | Intro notebook to scikit-learn.  Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
| [knn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb#K-Nearest-Neighbors-Classifier) | Implement k-nearest neighbors in scikit-learn. |
| [linear-reg](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-linear-reg.ipynb) | Implement linear regression in scikit-learn. |
| [svm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-svm.ipynb) | Implement support vector machine classifiers with and without kernels in scikit-learn. |
| [random-forest](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-random-forest.ipynb) | Implement random forest classifiers and regressors in scikit-learn. |
| [k-means](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-k-means.ipynb) | Implement k-means clustering in scikit-learn. |
| [pca](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-pca.ipynb) | Implement principal component analysis in scikit-learn. |
| [gmm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-gmm.ipynb) | Implement Gaussian mixture models in scikit-learn. |
| [validation](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-validation.ipynb) | Implement validation and model selection in scikit-learn. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scipy.png">
</p>
## statistical-inference-scipy
IPython Notebook(s) demonstrating statistical inference with SciPy functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| scipy | SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy extension of Python. It adds significant power to the interactive Python session by providing the user with high-level commands and classes for manipulating and visualizing data. |
| [effect-size](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scipy/effect_size.ipynb) | Explore statistics that quantify effect size by analyzing the difference in height between men and women.  Uses data from the Behavioral Risk Factor Surveillance System (BRFSS) to estimate the mean and standard deviation of height for adult women and men in the United States. |
| [sampling](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scipy/sampling.ipynb) | Explore random sampling by analyzing the average weight of men and women in the United States using BRFSS data. |
| [hypothesis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scipy/hypothesis.ipynb) | Explore hypothesis testing by analyzing the difference of first-born babies compared with others. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/pandas.png">
</p>
## pandas
IPython Notebook(s) demonstrating pandas functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [pandas](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb) | Software library written for data manipulation and analysis in Python. Offers data structures and operations for manipulating numerical tables and time series. |
| [github-data-wrangling](https://github.com/donnemartin/viz/blob/master/githubstats/data_wrangling.ipynb) | Learn how to load, clean, merge, and feature engineer by analyzing GitHub data from the [`Viz`](https://github.com/donnemartin/viz) repo. |
| [Introduction-to-Pandas](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.00-Introduction-to-Pandas.ipynb) | Introduction to Pandas. |
| [Introducing-Pandas-Objects](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.01-Introducing-Pandas-Objects.ipynb) | Learn about Pandas objects. |
| [Data Indexing and Selection](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.02-Data-Indexing-and-Selection.ipynb) | Learn about data indexing and selection in Pandas. |
| [Operations-in-Pandas](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.03-Operations-in-Pandas.ipynb) | Learn about operating on data in Pandas. |
| [Missing-Values](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.04-Missing-Values.ipynb) | Learn about handling missing data in Pandas. |
| [Hierarchical-Indexing](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.05-Hierarchical-Indexing.ipynb) | Learn about hierarchical indexing in Pandas. |
| [Concat-And-Append](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.06-Concat-And-Append.ipynb) | Learn about combining datasets: concat and append in Pandas. |
| [Merge-and-Join](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.07-Merge-and-Join.ipynb) | Learn about combining datasets: merge and join in Pandas. |
| [Aggregation-and-Grouping](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.08-Aggregation-and-Grouping.ipynb) | Learn about aggregation and grouping in Pandas. |
| [Pivot-Tables](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.09-Pivot-Tables.ipynb) | Learn about pivot tables in Pandas. |
| [Working-With-Strings](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.10-Working-With-Strings.ipynb) | Learn about vectorized string operations in Pandas. |
| [Working-with-Time-Series](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.11-Working-with-Time-Series.ipynb) | Learn about working with time series in pandas. |
| [Performance-Eval-and-Query](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/pandas/03.12-Performance-Eval-and-Query.ipynb) | Learn about high-performance Pandas: eval() and query() in Pandas. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/matplotlib.png">
</p>
## matplotlib
IPython Notebook(s) demonstrating matplotlib functionality.
| Notebook | Description |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| [matplotlib](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb) | Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. |
| [matplotlib-applied](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib-applied.ipynb) | Apply matplotlib visualizations to Kaggle competitions for exploratory data analysis.  Learn how to create bar plots, histograms, subplot2grid, normalized plots, scatter plots, subplots, and kernel density estimation plots. |
| [Introduction-To-Matplotlib](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.00-Introduction-To-Matplotlib.ipynb) | Introduction to Matplotlib. |
| [Simple-Line-Plots](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.01-Simple-Line-Plots.ipynb) | Learn about simple line plots in Matplotlib. |
| [Simple-Scatter-Plots](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.02-Simple-Scatter-Plots.ipynb) | Learn about simple scatter plots in Matplotlib. |
| [Errorbars.ipynb](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.03-Errorbars.ipynb) | Learn about visualizing errors in Matplotlib. |
| [Density-and-Contour-Plots](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.04-Density-and-Contour-Plots.ipynb) | Learn about density and contour plots in Matplotlib. |
| [Histograms-and-Binnings](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.05-Histograms-and-Binnings.ipynb) | Learn about histograms, binnings, and density in Matplotlib. |
| [Customizing-Legends](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.06-Customizing-Legends.ipynb) | Learn about customizing plot legends in Matplotlib. |
| [Customizing-Colorbars](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.07-Customizing-Colorbars.ipynb) | Learn about customizing colorbars in Matplotlib. |
| [Multiple-Subplots](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.08-Multiple-Subplots.ipynb) | Learn about multiple subplots in Matplotlib. |
| [Text-and-Annotation](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.09-Text-and-Annotation.ipynb) | Learn about text and annotation in Matplotlib. |
| [Customizing-Ticks](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.10-Customizing-Ticks.ipynb) | Learn about customizing ticks in Matplotlib. |
| [Settings-and-Stylesheets](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.11-Settings-and-Stylesheets.ipynb) | Learn about customizing Matplotlib: configurations and stylesheets. |
| [Three-Dimensional-Plotting](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.12-Three-Dimensional-Plotting.ipynb) | Learn about three-dimensional plotting in Matplotlib. |
| [Geographic-Data-With-Basemap](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.13-Geographic-Data-With-Basemap.ipynb) | Learn about geographic data with basemap in Matplotlib. |
| [Visualization-With-Seaborn](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/04.14-Visualization-With-Seaborn.ipynb) | Learn about visualization with Seaborn. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/numpy.png">
</p>
## numpy
IPython Notebook(s) demonstrating NumPy functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [numpy](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb) | Adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
| [Introduction-to-NumPy](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.00-Introduction-to-NumPy.ipynb) | Introduction to NumPy. |
| [Understanding-Data-Types](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.01-Understanding-Data-Types.ipynb) | Learn about data types in Python. |
| [The-Basics-Of-NumPy-Arrays](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.02-The-Basics-Of-NumPy-Arrays.ipynb) | Learn about the basics of NumPy arrays. |
| [Computation-on-arrays-ufuncs](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.03-Computation-on-arrays-ufuncs.ipynb) | Learn about computations on NumPy arrays: universal functions. |
| [Computation-on-arrays-aggregates](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.04-Computation-on-arrays-aggregates.ipynb) | Learn about aggregations: min, max, and everything in between in NumPy. |
| [Computation-on-arrays-broadcasting](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.05-Computation-on-arrays-broadcasting.ipynb) | Learn about computation on arrays: broadcasting in NumPy. |
| [Boolean-Arrays-and-Masks](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.06-Boolean-Arrays-and-Masks.ipynb) | Learn about comparisons, masks, and boolean logic in NumPy. |
| [Fancy-Indexing](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.07-Fancy-Indexing.ipynb) | Learn about fancy indexing in NumPy. |
| [Sorting](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.08-Sorting.ipynb) | Learn about sorting arrays in NumPy. |
| [Structured-Data-NumPy](http://nbviewer.jupyter.org/github/donnemartin/data-science-ipython-notebooks/blob/master/numpy/02.09-Structured-Data-NumPy.ipynb) | Learn about structured data: NumPy's structured arrays. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/python.png">
</p>
## python-data
IPython Notebook(s) demonstrating Python functionality geared towards data analysis.
| Notebook | Description |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| [data structures](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/structs.ipynb) | Learn Python basics with tuples, lists, dicts, sets. |
| [data structure utilities](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/structs_utils.ipynb) | Learn Python operations such as slice, range, xrange, bisect, sort, sorted, reversed, enumerate, zip, list comprehensions. |
| [functions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/functions.ipynb) | Learn about more advanced Python features: Functions as objects, lambda functions, closures, *args, **kwargs currying, generators, generator expressions, itertools. |
| [datetime](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/datetime.ipynb) | Learn how to work with Python dates and times: datetime, strftime, strptime, timedelta. |
| [logging](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/logs.ipynb) | Learn about Python logging with RotatingFileHandler and TimedRotatingFileHandler. |
| [pdb](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/pdb.ipynb) | Learn how to debug in Python with the interactive source code debugger. |
| [unit tests](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/unit_tests.ipynb) | Learn how to test in Python with Nose unit tests. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
</p>
## kaggle-and-business-analyses
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
| Notebook | Description |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic.  Learn data cleaning, exploratory data analysis, and machine learning. |
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn.  Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors.  Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/spark.png">
</p>
## spark
IPython Notebook(s) demonstrating spark and HDFS functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| [spark](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/spark/spark.ipynb) | In-memory cluster computing framework, up to 100 times faster for certain applications and is well suited for machine learning algorithms. |
| [hdfs](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/spark/hdfs.ipynb) | Reliably stores very large files across machines in a large cluster. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/mrjob.png">
</p>
## mapreduce-python
IPython Notebook(s) demonstrating Hadoop MapReduce with mrjob functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| [mapreduce-python](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/mapreduce/mapreduce-python.ipynb) | Runs MapReduce jobs in Python, executing jobs locally or on Hadoop clusters. Demonstrates Hadoop Streaming in Python code with unit test and [mrjob](https://github.com/Yelp/mrjob) config file to analyze Amazon S3 bucket logs on Elastic MapReduce.  [Disco](https://github.com/discoproject/disco/) is another python-based alternative.|
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/aws.png">
</p>
## aws
IPython Notebook(s) demonstrating Amazon Web Services (AWS) and AWS tools functionality.
Also check out:
* [SAWS](https://github.com/donnemartin/saws): A Supercharged AWS command line interface (CLI).
* [Awesome AWS](https://github.com/donnemartin/awesome-aws): A curated list of libraries, open source repos, guides, blogs, and other resources.
| Notebook | Description |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [boto](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#Boto) | Official AWS SDK for Python. |
| [s3cmd](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#s3cmd) | Interacts with S3 through the command line. |
| [s3distcp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#s3distcp) | Combines smaller files and aggregates them together by taking in a pattern and target file.  S3DistCp can also be used to transfer large volumes of data from S3 to your Hadoop cluster. |
| [s3-parallel-put](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#s3-parallel-put) | Uploads multiple files to S3 in parallel. |
| [redshift](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#redshift) | Acts as a fast data warehouse built on top of technology from massive parallel processing (MPP). |
| [kinesis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#kinesis) | Streams data in real time with the ability to process thousands of data streams per second. |
| [lambda](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#lambda) | Runs code in response to events, automatically managing compute resources. |
<br/>
<p align="center">
  <img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/commands.png">
</p>
## commands
IPython Notebook(s) demonstrating various command lines for Linux, Git, etc.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [linux](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/linux.ipynb) | Unix-like and mostly POSIX-compliant computer operating system.  Disk usage, splitting files, grep, sed, curl, viewing running processes, terminal syntax highlighting, and Vim.|
| [anaconda](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#anaconda) | Distribution of the Python programming language for large-scale data processing, predictive analytics, and scientific computing, that aims to simplify package management and deployment. |
| [ipython notebook](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#ipython-notebook) | Web-based interactive computational environment where you can combine code execution, text, mathematics, plots and rich media into a single document. |
| [git](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#git) | Distributed revision control system with an emphasis on speed, data integrity, and support for distributed, non-linear workflows. |
| [ruby](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#ruby) | Used to interact with the AWS command line and for Jekyll, a blog framework that can be hosted on GitHub Pages. |
| [jekyll](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#jekyll) | Simple, blog-aware, static site generator for personal, project, or organization sites.  Renders Markdown or Textile and Liquid templates, and produces a complete, static website ready to be served by Apache HTTP Server, Nginx or another web server. |
| [pelican](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#pelican) | Python-based alternative to Jekyll. |
| [django](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/commands/misc.ipynb#django) | High-level Python Web framework that encourages rapid development and clean, pragmatic design. It can be useful to share reports/analyses and for blogging. Lighter-weight alternatives include [Pyramid](https://github.com/Pylons/pyramid), [Flask](https://github.com/pallets/flask), [Tornado](https://github.com/tornadoweb/tornado), and [Bottle](https://github.com/bottlepy/bottle).
## misc
IPython Notebook(s) demonstrating miscellaneous functionality.
| Notebook | Description |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [regex](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/misc/regex.ipynb) | Regular expression cheat sheet useful in data wrangling.|
[algorithmia](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/misc/Algorithmia.ipynb) | Algorithmia is a marketplace for algorithms. This notebook showcases 4 different algorithms: Face Detection, Content Summarizer, Latent Dirichlet Allocation and Optical Character Recognition.|
## notebook-installation
### anaconda
Anaconda is a free distribution of the Python programming language for large-scale data processing, predictive analytics, and scientific computing that aims to simplify package management and deployment.
Follow instructions to install [Anaconda](https://docs.continuum.io/anaconda/install) or the more lightweight [miniconda](http://conda.pydata.org/miniconda.html).
### dev-setup
For detailed instructions, scripts, and tools to set up your development environment for data analysis, check out the [dev-setup](https://github.com/donnemartin/dev-setup) repo.
### running-notebooks
To view interactive content or to modify elements within the IPython notebooks, you must first clone or download the repository then run the notebook.  More information on IPython Notebooks can be found [here.](http://ipython.org/notebook.html)
    $ git clone https://github.com/donnemartin/data-science-ipython-notebooks.git
    $ cd data-science-ipython-notebooks
    $ jupyter notebook
Notebooks tested with Python 2.7.x.
## credits
* [Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython](http://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1449319793) by Wes McKinney
* [PyCon 2015 Scikit-learn Tutorial](https://github.com/jakevdp/sklearn_pycon2015) by Jake VanderPlas
* [Python Data Science Handbook](https://github.com/jakevdp/PythonDataScienceHandbook) by Jake VanderPlas
* [Parallel Machine Learning with scikit-learn and IPython](https://github.com/ogrisel/parallel_ml_tutorial) by Olivier Grisel
* [Statistical Interference Using Computational Methods in Python](https://github.com/AllenDowney/CompStats) by Allen Downey
* [TensorFlow Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien
* [TensorFlow Tutorials](https://github.com/pkmital/tensorflow_tutorials) by Parag K Mital
* [TensorFlow Tutorials](https://github.com/nlintz/TensorFlow-Tutorials) by Nathan Lintz
* [TensorFlow Tutorials](https://github.com/alrojo/tensorflow-tutorial) by Alexander R Johansen
* [TensorFlow Book](https://github.com/BinRoot/TensorFlow-Book) by Nishant Shukla
* [Summer School 2015](https://github.com/mila-udem/summerschool2015) by mila-udem
* [Keras tutorials](https://github.com/leriomaggio/deep-learning-keras-tensorflow) by Valerio Maggio
* [Kaggle](https://www.kaggle.com/)
* [Yhat Blog](http://blog.yhat.com/)
## contributing
Contributions are welcome!  For bug reports or requests please [submit an issue](https://github.com/donnemartin/data-science-ipython-notebooks/issues).
## contact-info
Feel free to contact me to discuss any issues, questions, or comments.
* Email: [donne.martin@gmail.com](mailto:donne.martin@gmail.com)
* Twitter: [@donne_martin](https://twitter.com/donne_martin)
* GitHub: [donnemartin](https://github.com/donnemartin)
* LinkedIn: [donnemartin](https://www.linkedin.com/in/donnemartin)
* Website: [donnemartin.com](http://donnemartin.com)
## license
This repository contains a variety of content; some developed by Donne Martin, and some from third-parties.  The third-party content is distributed under the license provided by those parties.
The content developed by Donne Martin is distributed under the following license:
*I am providing code and resources in this repository to you under an open source license.  Because this is my personal repository, the license you receive to my code and resources is from me and not my employer (Facebook).*
    Copyright 2015 Donne Martin
    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at
       http://www.apache.org/licenses/LICENSE-2.0
    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.

%prep
%autosetup -n tql-2020.11.11.15.32.5

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-tql -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 2020.11.11.15.32.5-1
- Package Spec generated