1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
|
%global _empty_manifest_terminate_build 0
Name: python-treex
Version: 0.6.12
Release: 1
Summary: please add a summary manually as the author left a blank one
License: MIT
URL: https://cgarciae.github.io/treex
Source0: https://mirrors.aliyun.com/pypi/web/packages/61/ff/2514ae95f74065cdfe8c48bdb6c6fd563a87567400be698e7f1103acebf5/treex-0.6.12.tar.gz
BuildArch: noarch
Requires: python3-flax
Requires: python3-PyYAML
Requires: python3-rich
Requires: python3-optax
Requires: python3-einops
Requires: python3-treeo
Requires: python3-certifi
%description
_Deprecation Notice_: This library was an experiment trying to get pytree Modules working with Flax-like colletions. I'd currently recommend the following alternatives:
* Just custom pytrees: [simple_pytree](https://github.com/cgarciae/simple-pytree)
* Pytree module system: [equinox](https://github.com/patrick-kidger/equinox)
* Production ready module system: [flax](https://github.com/google/flax)
# Treex
_A Pytree Module system for Deep Learning in JAX_
#### Main Features
* 💡 **Intuitive**: Modules contain their own parameters and respect Object Oriented semantics like in PyTorch and Keras.
* 🌳 **Pytree-based**: Modules are Pytrees whose leaves are its parameters, meaning they are fully compatible with `jit`, `grad`, `vmap`, etc.
Treex is implemented on top of [Treeo](https://github.com/cgarciae/treeo) and reexports all of its API for convenience.
[Getting Started](#getting-started) | [User Guide](https://cgarciae.github.io/treex/user-guide/intro) | [Examples](#examples) | [Documentation](https://cgarciae.github.io/treex)
## What is included?
* A base `Module` class.
* A `nn` module for with common layers implemented as wrappers over Flax layers.
* A `losses` module with common loss functions.
* A `metrics` module with common metrics.
* An `Optimizer` class that can wrap any optax optimizer.
## Why Treex?
<details>
<summary>Show</summary><br>
Despite all JAX benefits, current Module systems are not intuitive to new users and add additional complexity not present in frameworks like PyTorch or Keras. Treex takes inspiration from S4TF and delivers an intuitive experience using JAX Pytree infrastructure.
<details>
<summary>Current Alternative's Drawbacks and Solutions</summary>
Currently we have many alternatives like Flax, Haiku, Objax, that have one or more of the following drawbacks:
* Module structure and parameter structure are separate, and parameters have to be manipulated around by the end-user, which is not intuitive. In Treex, parameters are stored in the modules themselves and can be accessed directly.
* Monadic architecture adds complexity. Flax and Haiku use an `apply` method to call modules that set a context with parameters, rng, and different metadata, which adds additional overhead to the API and creates an asymmetry in how Modules are being used inside and outside a context. In Treex, modules can be called directly.
* Among different frameworks, parameter surgery requires special consideration and is challenging to implement. Consider a standard workflow such as transfer learning, transferring parameters and state from a pre-trained module or submodule as part of a new module; in different frameworks, we have to know precisely how to extract their parameters and how to insert them into the new parameter structure/dictionaries such that it is in agreement with the new module structure. In Treex, just as in PyTorch / Keras, we enable to pass the (sub)module to the new module, and parameters are automatically added to the new structure.
* Multiple frameworks deviate from JAX semantics and require particular versions of `jit`, `grad`, `vmap`, etc., which makes it harder to integrate with other JAX libraries. Treex's Modules are plain old JAX PyTrees and are compatible with any JAX library that supports them.
* Other Pytree-based approaches like Parallax and Equinox do not have a total state management solution to handle complex states as encountered in Flax. Treex has the Filter and Update API, which is very expressive and can effectively handle systems with a complex state.
</details>
</details>
## Installation
Install using pip:
```bash
pip install treex
```
## Getting Started
<!-- Remake Getting Started now that most content is in the User Guide -->
This is a small appetizer to give you a feel for how using Treex looks like, be sure to checkout the [User Guide](https://cgarciae.github.io/treex/user-guide/intro) for a more in-depth explanation.
```python
import treex as tx
import numpy as np
import jax, optax
# create some data
x = np.random.uniform(size=(50, 1))
y = 1.3 * x ** 2 - 0.3 + np.random.normal(size=x.shape)
# initialize a Module, its simple
model = tx.MLP([64, 1]).init(key=42, inputs=x)
# define an optimizer, init with model params
optimizer = tx.Optimizer(optax.adam(4e-3)).init(model)
# define loss function, notice
# Modules are jit-abel and differentiable 🤯
@jax.jit
@jax.grad
def loss_fn(model: tx.MLP, x, y):
# forward is a simple call
preds = model(x)
# MSE
return ((preds - y) ** 2).mean()
# basic training loop
for step in range(500):
# grads have the same type as model
grads: tx.MLP = loss_fn(model, x, y)
# apply the gradient updates
model = optimizer.update(grads, model)
# Pytorch-like eval mode
model = model.eval()
preds = model(x)
```
#### Custom Modules
<details>
<summary>Show</summary><br>
Modules are Treeo `Tree`s, which are Pytrees. When creating core layers you often mark fields that will contain state that JAX should be aware as `nodes` by assigning class variables to the output of functions like `tx.Parameter.node()`:
```python
import treex as tx
class Linear(tx.Module):
# use Treeo's API to define Parameter nodes
w: jnp.ndarray = tx.Parameter.node()
b: jnp.ndarray = tx.Parameter.node()
def __init__(self, features_out: int):
self.features_out = features_out
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
# init will call forward, we can know if we are inside it
if self.initializing():
# `next_key` only available during `init`
key = tx.next_key()
# leverage shape inference
self.w = jax.random.uniform(
key, shape=[x.shape[-1], self.features_out]
)
self.b = jnp.zeros(shape=[self.features_out])
# linear forward
return jnp.dot(x, self.w) + self.b
model = Linear(10).init(key=42, inputs=x)
```
Node field types (e.g. `tx.Parameter`) are called Kinds and Treex exports a whole family of Kinds which serve for differente purposes such as holding non-differentiable state (`tx.BatchStats`), metric's state (`tx.MetricState`), logging, etc. Checkout the [kinds](https://cgarciae.github.io/treex/user-guide/kinds) section for more information.
</details>
#### Composite Modules
<details>
<summary>Show</summary><br>
Composite Modules usually hold and call other Modules within them, while they would be instantiate inside `__init__` and used later in `__call__` like in Pytorch / Keras, in Treex you usually leverage the `@tx.compact` decorator over the `__call__` method to define the submodules inline.
```python
class MLP(tx.Module):
def __init__(self, features: Sequence[int]):
self.features = features
# compact lets you define submodules on the fly
@tx.compact
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
for units in self.features[:-1]:
x = Linear(units)(x)
x = jax.nn.relu(x)
return Linear(self.features[-1])(x)
model = MLP([32, 10]).init(key=42, inputs=x)
```
Under the hood all calls to submodule constructors (e.g. `Linear(...)`) inside `compact` are assigned to fields in the parent Module (`MLP`) so they are part of the same Pytree, their field names are available under the `._subtrees` attribute. `compact` must always define submodules in the same order.
</details>
## Status
Treex is in an early stage, things might break between versions but we will respect semanting versioning. Since Treex layers are numerically equivalent to Flax, it borrows some maturity and yields more confidence over its results. Feedback is much appreciated.
**Roadmap**:
- Wrap all Flax Linen Modules
- Implement more layers, losses, and metrics.
- Create applications and pretrained Modules.
Contributions are welcomed!
## Sponsors 💚
* [Quansight](https://www.quansight.com) - paid development time
## Examples
Checkout the [/examples](examples) directory for more detailed examples. Here are a few additional toy examples:
#### Linear Regression
This is a simple but realistic example of how Treex is used.
```python
from functools import partial
from typing import Union
import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np
import optax
import treex as tx
x = np.random.uniform(size=(500, 1))
y = 1.4 * x - 0.3 + np.random.normal(scale=0.1, size=(500, 1))
# differentiate only w.r.t. parameters
def loss_fn(params, model, x, y):
# merge params into model
model = model.merge(params)
preds = model(x)
loss = jnp.mean((preds - y) ** 2)
# the model may contain state updates
# so it should be returned
return loss, model
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
# both model and optimizer are jit-able
@jax.jit
def train_step(model, x, y, optimizer):
# select only the parameters
params = model.parameters()
(loss, model), grads = grad_fn(params, model, x, y)
# update params and model
params = optimizer.update(grads, params)
model = model.merge(params)
# return new model and optimizer
return loss, model, optimizer
model = tx.Linear(1).init(42, x)
optimizer = tx.Optimizer(optax.adam(0.01)).init(model)
for step in range(300):
loss, model, optimizer = train_step(model, x, y, optimizer)
if step % 50 == 0:
print(f"loss: {loss:.4f}")
# eval mode "turns off" layers like Dropout / BatchNorm
model = model.eval()
X_test = np.linspace(x.min(), x.max(), 100)[:, None]
preds = model(X_test)
plt.scatter(x, y, c="k", label="data")
plt.plot(X_test, preds, c="b", linewidth=2, label="prediction")
plt.legend()
plt.show()
```
#### A Stateful Module
Here is an example of creating a stateful module of a `RollingMean` metric and using them with `jax.jit`. For a real use cases use the metrics inside `treex.metrics`.
```python
class RollingMean(tx.Module):
count: jnp.ndarray = tx.State.node()
total: jnp.ndarray = tx.State.node()
def __init__(self):
self.count = jnp.array(0, dtype=jnp.int32)
self.total = jnp.array(0.0, dtype=jnp.float32)
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
self.count += np.prod(x.shape)
self.total += x.sum()
return self.total / self.count
@jax.jit
def update(x: jnp.ndarray, metric: RollingMean) -> Tuple[jnp.ndarray, RollingMean]:
mean = metric(x)
return mean, metric # return mean value and updated metric
metric = RollingMean()
for i in range(10):
x = np.random.uniform(-1, 1, size=(100, 1))
mean, metric = update(x, metric)
print(mean)
```
%package -n python3-treex
Summary: please add a summary manually as the author left a blank one
Provides: python-treex
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-treex
_Deprecation Notice_: This library was an experiment trying to get pytree Modules working with Flax-like colletions. I'd currently recommend the following alternatives:
* Just custom pytrees: [simple_pytree](https://github.com/cgarciae/simple-pytree)
* Pytree module system: [equinox](https://github.com/patrick-kidger/equinox)
* Production ready module system: [flax](https://github.com/google/flax)
# Treex
_A Pytree Module system for Deep Learning in JAX_
#### Main Features
* 💡 **Intuitive**: Modules contain their own parameters and respect Object Oriented semantics like in PyTorch and Keras.
* 🌳 **Pytree-based**: Modules are Pytrees whose leaves are its parameters, meaning they are fully compatible with `jit`, `grad`, `vmap`, etc.
Treex is implemented on top of [Treeo](https://github.com/cgarciae/treeo) and reexports all of its API for convenience.
[Getting Started](#getting-started) | [User Guide](https://cgarciae.github.io/treex/user-guide/intro) | [Examples](#examples) | [Documentation](https://cgarciae.github.io/treex)
## What is included?
* A base `Module` class.
* A `nn` module for with common layers implemented as wrappers over Flax layers.
* A `losses` module with common loss functions.
* A `metrics` module with common metrics.
* An `Optimizer` class that can wrap any optax optimizer.
## Why Treex?
<details>
<summary>Show</summary><br>
Despite all JAX benefits, current Module systems are not intuitive to new users and add additional complexity not present in frameworks like PyTorch or Keras. Treex takes inspiration from S4TF and delivers an intuitive experience using JAX Pytree infrastructure.
<details>
<summary>Current Alternative's Drawbacks and Solutions</summary>
Currently we have many alternatives like Flax, Haiku, Objax, that have one or more of the following drawbacks:
* Module structure and parameter structure are separate, and parameters have to be manipulated around by the end-user, which is not intuitive. In Treex, parameters are stored in the modules themselves and can be accessed directly.
* Monadic architecture adds complexity. Flax and Haiku use an `apply` method to call modules that set a context with parameters, rng, and different metadata, which adds additional overhead to the API and creates an asymmetry in how Modules are being used inside and outside a context. In Treex, modules can be called directly.
* Among different frameworks, parameter surgery requires special consideration and is challenging to implement. Consider a standard workflow such as transfer learning, transferring parameters and state from a pre-trained module or submodule as part of a new module; in different frameworks, we have to know precisely how to extract their parameters and how to insert them into the new parameter structure/dictionaries such that it is in agreement with the new module structure. In Treex, just as in PyTorch / Keras, we enable to pass the (sub)module to the new module, and parameters are automatically added to the new structure.
* Multiple frameworks deviate from JAX semantics and require particular versions of `jit`, `grad`, `vmap`, etc., which makes it harder to integrate with other JAX libraries. Treex's Modules are plain old JAX PyTrees and are compatible with any JAX library that supports them.
* Other Pytree-based approaches like Parallax and Equinox do not have a total state management solution to handle complex states as encountered in Flax. Treex has the Filter and Update API, which is very expressive and can effectively handle systems with a complex state.
</details>
</details>
## Installation
Install using pip:
```bash
pip install treex
```
## Getting Started
<!-- Remake Getting Started now that most content is in the User Guide -->
This is a small appetizer to give you a feel for how using Treex looks like, be sure to checkout the [User Guide](https://cgarciae.github.io/treex/user-guide/intro) for a more in-depth explanation.
```python
import treex as tx
import numpy as np
import jax, optax
# create some data
x = np.random.uniform(size=(50, 1))
y = 1.3 * x ** 2 - 0.3 + np.random.normal(size=x.shape)
# initialize a Module, its simple
model = tx.MLP([64, 1]).init(key=42, inputs=x)
# define an optimizer, init with model params
optimizer = tx.Optimizer(optax.adam(4e-3)).init(model)
# define loss function, notice
# Modules are jit-abel and differentiable 🤯
@jax.jit
@jax.grad
def loss_fn(model: tx.MLP, x, y):
# forward is a simple call
preds = model(x)
# MSE
return ((preds - y) ** 2).mean()
# basic training loop
for step in range(500):
# grads have the same type as model
grads: tx.MLP = loss_fn(model, x, y)
# apply the gradient updates
model = optimizer.update(grads, model)
# Pytorch-like eval mode
model = model.eval()
preds = model(x)
```
#### Custom Modules
<details>
<summary>Show</summary><br>
Modules are Treeo `Tree`s, which are Pytrees. When creating core layers you often mark fields that will contain state that JAX should be aware as `nodes` by assigning class variables to the output of functions like `tx.Parameter.node()`:
```python
import treex as tx
class Linear(tx.Module):
# use Treeo's API to define Parameter nodes
w: jnp.ndarray = tx.Parameter.node()
b: jnp.ndarray = tx.Parameter.node()
def __init__(self, features_out: int):
self.features_out = features_out
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
# init will call forward, we can know if we are inside it
if self.initializing():
# `next_key` only available during `init`
key = tx.next_key()
# leverage shape inference
self.w = jax.random.uniform(
key, shape=[x.shape[-1], self.features_out]
)
self.b = jnp.zeros(shape=[self.features_out])
# linear forward
return jnp.dot(x, self.w) + self.b
model = Linear(10).init(key=42, inputs=x)
```
Node field types (e.g. `tx.Parameter`) are called Kinds and Treex exports a whole family of Kinds which serve for differente purposes such as holding non-differentiable state (`tx.BatchStats`), metric's state (`tx.MetricState`), logging, etc. Checkout the [kinds](https://cgarciae.github.io/treex/user-guide/kinds) section for more information.
</details>
#### Composite Modules
<details>
<summary>Show</summary><br>
Composite Modules usually hold and call other Modules within them, while they would be instantiate inside `__init__` and used later in `__call__` like in Pytorch / Keras, in Treex you usually leverage the `@tx.compact` decorator over the `__call__` method to define the submodules inline.
```python
class MLP(tx.Module):
def __init__(self, features: Sequence[int]):
self.features = features
# compact lets you define submodules on the fly
@tx.compact
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
for units in self.features[:-1]:
x = Linear(units)(x)
x = jax.nn.relu(x)
return Linear(self.features[-1])(x)
model = MLP([32, 10]).init(key=42, inputs=x)
```
Under the hood all calls to submodule constructors (e.g. `Linear(...)`) inside `compact` are assigned to fields in the parent Module (`MLP`) so they are part of the same Pytree, their field names are available under the `._subtrees` attribute. `compact` must always define submodules in the same order.
</details>
## Status
Treex is in an early stage, things might break between versions but we will respect semanting versioning. Since Treex layers are numerically equivalent to Flax, it borrows some maturity and yields more confidence over its results. Feedback is much appreciated.
**Roadmap**:
- Wrap all Flax Linen Modules
- Implement more layers, losses, and metrics.
- Create applications and pretrained Modules.
Contributions are welcomed!
## Sponsors 💚
* [Quansight](https://www.quansight.com) - paid development time
## Examples
Checkout the [/examples](examples) directory for more detailed examples. Here are a few additional toy examples:
#### Linear Regression
This is a simple but realistic example of how Treex is used.
```python
from functools import partial
from typing import Union
import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np
import optax
import treex as tx
x = np.random.uniform(size=(500, 1))
y = 1.4 * x - 0.3 + np.random.normal(scale=0.1, size=(500, 1))
# differentiate only w.r.t. parameters
def loss_fn(params, model, x, y):
# merge params into model
model = model.merge(params)
preds = model(x)
loss = jnp.mean((preds - y) ** 2)
# the model may contain state updates
# so it should be returned
return loss, model
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
# both model and optimizer are jit-able
@jax.jit
def train_step(model, x, y, optimizer):
# select only the parameters
params = model.parameters()
(loss, model), grads = grad_fn(params, model, x, y)
# update params and model
params = optimizer.update(grads, params)
model = model.merge(params)
# return new model and optimizer
return loss, model, optimizer
model = tx.Linear(1).init(42, x)
optimizer = tx.Optimizer(optax.adam(0.01)).init(model)
for step in range(300):
loss, model, optimizer = train_step(model, x, y, optimizer)
if step % 50 == 0:
print(f"loss: {loss:.4f}")
# eval mode "turns off" layers like Dropout / BatchNorm
model = model.eval()
X_test = np.linspace(x.min(), x.max(), 100)[:, None]
preds = model(X_test)
plt.scatter(x, y, c="k", label="data")
plt.plot(X_test, preds, c="b", linewidth=2, label="prediction")
plt.legend()
plt.show()
```
#### A Stateful Module
Here is an example of creating a stateful module of a `RollingMean` metric and using them with `jax.jit`. For a real use cases use the metrics inside `treex.metrics`.
```python
class RollingMean(tx.Module):
count: jnp.ndarray = tx.State.node()
total: jnp.ndarray = tx.State.node()
def __init__(self):
self.count = jnp.array(0, dtype=jnp.int32)
self.total = jnp.array(0.0, dtype=jnp.float32)
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
self.count += np.prod(x.shape)
self.total += x.sum()
return self.total / self.count
@jax.jit
def update(x: jnp.ndarray, metric: RollingMean) -> Tuple[jnp.ndarray, RollingMean]:
mean = metric(x)
return mean, metric # return mean value and updated metric
metric = RollingMean()
for i in range(10):
x = np.random.uniform(-1, 1, size=(100, 1))
mean, metric = update(x, metric)
print(mean)
```
%package help
Summary: Development documents and examples for treex
Provides: python3-treex-doc
%description help
_Deprecation Notice_: This library was an experiment trying to get pytree Modules working with Flax-like colletions. I'd currently recommend the following alternatives:
* Just custom pytrees: [simple_pytree](https://github.com/cgarciae/simple-pytree)
* Pytree module system: [equinox](https://github.com/patrick-kidger/equinox)
* Production ready module system: [flax](https://github.com/google/flax)
# Treex
_A Pytree Module system for Deep Learning in JAX_
#### Main Features
* 💡 **Intuitive**: Modules contain their own parameters and respect Object Oriented semantics like in PyTorch and Keras.
* 🌳 **Pytree-based**: Modules are Pytrees whose leaves are its parameters, meaning they are fully compatible with `jit`, `grad`, `vmap`, etc.
Treex is implemented on top of [Treeo](https://github.com/cgarciae/treeo) and reexports all of its API for convenience.
[Getting Started](#getting-started) | [User Guide](https://cgarciae.github.io/treex/user-guide/intro) | [Examples](#examples) | [Documentation](https://cgarciae.github.io/treex)
## What is included?
* A base `Module` class.
* A `nn` module for with common layers implemented as wrappers over Flax layers.
* A `losses` module with common loss functions.
* A `metrics` module with common metrics.
* An `Optimizer` class that can wrap any optax optimizer.
## Why Treex?
<details>
<summary>Show</summary><br>
Despite all JAX benefits, current Module systems are not intuitive to new users and add additional complexity not present in frameworks like PyTorch or Keras. Treex takes inspiration from S4TF and delivers an intuitive experience using JAX Pytree infrastructure.
<details>
<summary>Current Alternative's Drawbacks and Solutions</summary>
Currently we have many alternatives like Flax, Haiku, Objax, that have one or more of the following drawbacks:
* Module structure and parameter structure are separate, and parameters have to be manipulated around by the end-user, which is not intuitive. In Treex, parameters are stored in the modules themselves and can be accessed directly.
* Monadic architecture adds complexity. Flax and Haiku use an `apply` method to call modules that set a context with parameters, rng, and different metadata, which adds additional overhead to the API and creates an asymmetry in how Modules are being used inside and outside a context. In Treex, modules can be called directly.
* Among different frameworks, parameter surgery requires special consideration and is challenging to implement. Consider a standard workflow such as transfer learning, transferring parameters and state from a pre-trained module or submodule as part of a new module; in different frameworks, we have to know precisely how to extract their parameters and how to insert them into the new parameter structure/dictionaries such that it is in agreement with the new module structure. In Treex, just as in PyTorch / Keras, we enable to pass the (sub)module to the new module, and parameters are automatically added to the new structure.
* Multiple frameworks deviate from JAX semantics and require particular versions of `jit`, `grad`, `vmap`, etc., which makes it harder to integrate with other JAX libraries. Treex's Modules are plain old JAX PyTrees and are compatible with any JAX library that supports them.
* Other Pytree-based approaches like Parallax and Equinox do not have a total state management solution to handle complex states as encountered in Flax. Treex has the Filter and Update API, which is very expressive and can effectively handle systems with a complex state.
</details>
</details>
## Installation
Install using pip:
```bash
pip install treex
```
## Getting Started
<!-- Remake Getting Started now that most content is in the User Guide -->
This is a small appetizer to give you a feel for how using Treex looks like, be sure to checkout the [User Guide](https://cgarciae.github.io/treex/user-guide/intro) for a more in-depth explanation.
```python
import treex as tx
import numpy as np
import jax, optax
# create some data
x = np.random.uniform(size=(50, 1))
y = 1.3 * x ** 2 - 0.3 + np.random.normal(size=x.shape)
# initialize a Module, its simple
model = tx.MLP([64, 1]).init(key=42, inputs=x)
# define an optimizer, init with model params
optimizer = tx.Optimizer(optax.adam(4e-3)).init(model)
# define loss function, notice
# Modules are jit-abel and differentiable 🤯
@jax.jit
@jax.grad
def loss_fn(model: tx.MLP, x, y):
# forward is a simple call
preds = model(x)
# MSE
return ((preds - y) ** 2).mean()
# basic training loop
for step in range(500):
# grads have the same type as model
grads: tx.MLP = loss_fn(model, x, y)
# apply the gradient updates
model = optimizer.update(grads, model)
# Pytorch-like eval mode
model = model.eval()
preds = model(x)
```
#### Custom Modules
<details>
<summary>Show</summary><br>
Modules are Treeo `Tree`s, which are Pytrees. When creating core layers you often mark fields that will contain state that JAX should be aware as `nodes` by assigning class variables to the output of functions like `tx.Parameter.node()`:
```python
import treex as tx
class Linear(tx.Module):
# use Treeo's API to define Parameter nodes
w: jnp.ndarray = tx.Parameter.node()
b: jnp.ndarray = tx.Parameter.node()
def __init__(self, features_out: int):
self.features_out = features_out
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
# init will call forward, we can know if we are inside it
if self.initializing():
# `next_key` only available during `init`
key = tx.next_key()
# leverage shape inference
self.w = jax.random.uniform(
key, shape=[x.shape[-1], self.features_out]
)
self.b = jnp.zeros(shape=[self.features_out])
# linear forward
return jnp.dot(x, self.w) + self.b
model = Linear(10).init(key=42, inputs=x)
```
Node field types (e.g. `tx.Parameter`) are called Kinds and Treex exports a whole family of Kinds which serve for differente purposes such as holding non-differentiable state (`tx.BatchStats`), metric's state (`tx.MetricState`), logging, etc. Checkout the [kinds](https://cgarciae.github.io/treex/user-guide/kinds) section for more information.
</details>
#### Composite Modules
<details>
<summary>Show</summary><br>
Composite Modules usually hold and call other Modules within them, while they would be instantiate inside `__init__` and used later in `__call__` like in Pytorch / Keras, in Treex you usually leverage the `@tx.compact` decorator over the `__call__` method to define the submodules inline.
```python
class MLP(tx.Module):
def __init__(self, features: Sequence[int]):
self.features = features
# compact lets you define submodules on the fly
@tx.compact
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
for units in self.features[:-1]:
x = Linear(units)(x)
x = jax.nn.relu(x)
return Linear(self.features[-1])(x)
model = MLP([32, 10]).init(key=42, inputs=x)
```
Under the hood all calls to submodule constructors (e.g. `Linear(...)`) inside `compact` are assigned to fields in the parent Module (`MLP`) so they are part of the same Pytree, their field names are available under the `._subtrees` attribute. `compact` must always define submodules in the same order.
</details>
## Status
Treex is in an early stage, things might break between versions but we will respect semanting versioning. Since Treex layers are numerically equivalent to Flax, it borrows some maturity and yields more confidence over its results. Feedback is much appreciated.
**Roadmap**:
- Wrap all Flax Linen Modules
- Implement more layers, losses, and metrics.
- Create applications and pretrained Modules.
Contributions are welcomed!
## Sponsors 💚
* [Quansight](https://www.quansight.com) - paid development time
## Examples
Checkout the [/examples](examples) directory for more detailed examples. Here are a few additional toy examples:
#### Linear Regression
This is a simple but realistic example of how Treex is used.
```python
from functools import partial
from typing import Union
import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np
import optax
import treex as tx
x = np.random.uniform(size=(500, 1))
y = 1.4 * x - 0.3 + np.random.normal(scale=0.1, size=(500, 1))
# differentiate only w.r.t. parameters
def loss_fn(params, model, x, y):
# merge params into model
model = model.merge(params)
preds = model(x)
loss = jnp.mean((preds - y) ** 2)
# the model may contain state updates
# so it should be returned
return loss, model
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
# both model and optimizer are jit-able
@jax.jit
def train_step(model, x, y, optimizer):
# select only the parameters
params = model.parameters()
(loss, model), grads = grad_fn(params, model, x, y)
# update params and model
params = optimizer.update(grads, params)
model = model.merge(params)
# return new model and optimizer
return loss, model, optimizer
model = tx.Linear(1).init(42, x)
optimizer = tx.Optimizer(optax.adam(0.01)).init(model)
for step in range(300):
loss, model, optimizer = train_step(model, x, y, optimizer)
if step % 50 == 0:
print(f"loss: {loss:.4f}")
# eval mode "turns off" layers like Dropout / BatchNorm
model = model.eval()
X_test = np.linspace(x.min(), x.max(), 100)[:, None]
preds = model(X_test)
plt.scatter(x, y, c="k", label="data")
plt.plot(X_test, preds, c="b", linewidth=2, label="prediction")
plt.legend()
plt.show()
```
#### A Stateful Module
Here is an example of creating a stateful module of a `RollingMean` metric and using them with `jax.jit`. For a real use cases use the metrics inside `treex.metrics`.
```python
class RollingMean(tx.Module):
count: jnp.ndarray = tx.State.node()
total: jnp.ndarray = tx.State.node()
def __init__(self):
self.count = jnp.array(0, dtype=jnp.int32)
self.total = jnp.array(0.0, dtype=jnp.float32)
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
self.count += np.prod(x.shape)
self.total += x.sum()
return self.total / self.count
@jax.jit
def update(x: jnp.ndarray, metric: RollingMean) -> Tuple[jnp.ndarray, RollingMean]:
mean = metric(x)
return mean, metric # return mean value and updated metric
metric = RollingMean()
for i in range(10):
x = np.random.uniform(-1, 1, size=(100, 1))
mean, metric = update(x, metric)
print(mean)
```
%prep
%autosetup -n treex-0.6.12
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-treex -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.12-1
- Package Spec generated
|