summaryrefslogtreecommitdiff
path: root/python-truecase.spec
blob: df96dbed64adf76d26c91d82e7d486978bdd7eeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
%global _empty_manifest_terminate_build 0
Name:		python-truecase
Version:	0.0.14
Release:	1
Summary:	A library to restore capitalization for text
License:	MIT
URL:		https://github.com/daltonfury42/truecase
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/85/06/89d0adae754d32626dcd0dcd958a1b0be295a9e084a6ecda25af6ebbcdb2/truecase-0.0.14.tar.gz
BuildArch:	noarch

Requires:	python3-nltk

%description
# TrueCase


![Main](https://github.com/daltonfury42/truecase/workflows/Main/badge.svg) ![Publish PyPI](https://github.com/daltonfury42/truecase/workflows/Publish%20Python%20distributions%20to%20PyPI/badge.svg)

A language independent, statistical, language modeling
based tool in Python that restores case information for text.

The model was inspired by the paper of [Lucian Vlad Lita  et al., tRuEcasIng](https://www.cs.cmu.edu/~llita/papers/lita.truecasing-acl2003.pdf) but with some simplifications.


A model trained on NLTK English corpus comes with the package by default, 
and for other languages, a script is provided to create the model. This model is 
not perfect, train the system on a large and recent dataset to achieve 
the best results (e.g. on a recent dump of Wikipedia).

### Prerequisites

- Python 3

The project uses NLTK. Find install instructions [here](https://www.nltk.org/install.html).

### Installing

```bash
pip3 install truecase
```

## Usage

Simple usecase:

```python
>>> import truecase
>>> truecase.get_true_case('hey, what is the weather in new york?')
'Hey, what is the weather in New York?''
```

## Training your own model

TODO. For now refer to Trainer.py

## Contributing

I see a lot of space for improvement. Feel free to fork and improve. Do sent a pull request.

## Authors

* **Dalton Fury** - *Initial work* - [daltonfury42](https://github.com/daltonfury42)

## License

This project is licensed under the MIT License - see the [LICENSE.md](LICENSE) file for details

## Acknowledgments

* [Lucian Vlad Lita  et al., tRuEcasIng](https://www.cs.cmu.edu/~llita/papers/lita.truecasing-acl2003.pdf)
* Borrowed a lot of code, and the idea from [truecaser](https://github.com/nreimers/truecaser/blob/master/README.md) by [nreimers](https://github.com/nreimers)




%package -n python3-truecase
Summary:	A library to restore capitalization for text
Provides:	python-truecase
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-truecase
# TrueCase


![Main](https://github.com/daltonfury42/truecase/workflows/Main/badge.svg) ![Publish PyPI](https://github.com/daltonfury42/truecase/workflows/Publish%20Python%20distributions%20to%20PyPI/badge.svg)

A language independent, statistical, language modeling
based tool in Python that restores case information for text.

The model was inspired by the paper of [Lucian Vlad Lita  et al., tRuEcasIng](https://www.cs.cmu.edu/~llita/papers/lita.truecasing-acl2003.pdf) but with some simplifications.


A model trained on NLTK English corpus comes with the package by default, 
and for other languages, a script is provided to create the model. This model is 
not perfect, train the system on a large and recent dataset to achieve 
the best results (e.g. on a recent dump of Wikipedia).

### Prerequisites

- Python 3

The project uses NLTK. Find install instructions [here](https://www.nltk.org/install.html).

### Installing

```bash
pip3 install truecase
```

## Usage

Simple usecase:

```python
>>> import truecase
>>> truecase.get_true_case('hey, what is the weather in new york?')
'Hey, what is the weather in New York?''
```

## Training your own model

TODO. For now refer to Trainer.py

## Contributing

I see a lot of space for improvement. Feel free to fork and improve. Do sent a pull request.

## Authors

* **Dalton Fury** - *Initial work* - [daltonfury42](https://github.com/daltonfury42)

## License

This project is licensed under the MIT License - see the [LICENSE.md](LICENSE) file for details

## Acknowledgments

* [Lucian Vlad Lita  et al., tRuEcasIng](https://www.cs.cmu.edu/~llita/papers/lita.truecasing-acl2003.pdf)
* Borrowed a lot of code, and the idea from [truecaser](https://github.com/nreimers/truecaser/blob/master/README.md) by [nreimers](https://github.com/nreimers)




%package help
Summary:	Development documents and examples for truecase
Provides:	python3-truecase-doc
%description help
# TrueCase


![Main](https://github.com/daltonfury42/truecase/workflows/Main/badge.svg) ![Publish PyPI](https://github.com/daltonfury42/truecase/workflows/Publish%20Python%20distributions%20to%20PyPI/badge.svg)

A language independent, statistical, language modeling
based tool in Python that restores case information for text.

The model was inspired by the paper of [Lucian Vlad Lita  et al., tRuEcasIng](https://www.cs.cmu.edu/~llita/papers/lita.truecasing-acl2003.pdf) but with some simplifications.


A model trained on NLTK English corpus comes with the package by default, 
and for other languages, a script is provided to create the model. This model is 
not perfect, train the system on a large and recent dataset to achieve 
the best results (e.g. on a recent dump of Wikipedia).

### Prerequisites

- Python 3

The project uses NLTK. Find install instructions [here](https://www.nltk.org/install.html).

### Installing

```bash
pip3 install truecase
```

## Usage

Simple usecase:

```python
>>> import truecase
>>> truecase.get_true_case('hey, what is the weather in new york?')
'Hey, what is the weather in New York?''
```

## Training your own model

TODO. For now refer to Trainer.py

## Contributing

I see a lot of space for improvement. Feel free to fork and improve. Do sent a pull request.

## Authors

* **Dalton Fury** - *Initial work* - [daltonfury42](https://github.com/daltonfury42)

## License

This project is licensed under the MIT License - see the [LICENSE.md](LICENSE) file for details

## Acknowledgments

* [Lucian Vlad Lita  et al., tRuEcasIng](https://www.cs.cmu.edu/~llita/papers/lita.truecasing-acl2003.pdf)
* Borrowed a lot of code, and the idea from [truecaser](https://github.com/nreimers/truecaser/blob/master/README.md) by [nreimers](https://github.com/nreimers)




%prep
%autosetup -n truecase-0.0.14

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-truecase -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.14-1
- Package Spec generated