summaryrefslogtreecommitdiff
path: root/python-tsextract.spec
blob: fc34de8804639ae5c2582fc8f66d512fe0192d4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
%global _empty_manifest_terminate_build 0
Name:		python-tsextract
Version:	0.0.9
Release:	1
Summary:	Time series data preprocessing
License:	GNU GPL
URL:		https://github.com/cydal/tsExtract/tree/master/tsextract
Source0:	https://mirrors.aliyun.com/pypi/web/packages/12/4d/8f5bf8123dd352f6559b623bf317c080771bf1371ef23ab76491b98d9082/tsextract-0.0.9.tar.gz
BuildArch:	noarch

Requires:	python3-pandas
Requires:	python3-plotnine
Requires:	python3-statsmodels
Requires:	python3-scipy
Requires:	python3-matplotlib
Requires:	python3-numpy

%description
![logo](https://i.postimg.cc/rsVLMjzn/tsextract-logo.jpg)


## tsExtract: Time Series Preprocessing Library

tsExtract is a time series preprocessing library. Using sliding windows, tsExtract allows for the conversion of time series data to a form that can be fed into standard machine learning regression algorithms like Linear Regression, Decision Trees Regression and as well as Deep Learning. 

![enter image description here](https://img.shields.io/badge/LICENSE-GNU_GPL-BLACK) ![enter image description here](https://img.shields.io/badge/pypi-v1.0.0-yellow)  ![enter image description here](https://anaconda.org/cydal/tsextract/badges/version.svg)  ![enter image description here](https://anaconda.org/cydal/tsextract/badges/latest_release_date.svg)  ![enter image description here](https://anaconda.org/cydal/tsextract/badges/platforms.svg)    ![enter image description here](https://anaconda.org/cydal/tsextract/badges/installer/conda.svg)  
[![Open Source Helpers](https://www.codetriage.com/cydal/tsextract/badges/users.svg)](https://www.codetriage.com/cydal/tsextract)



# Installation

<code> pip </code>

> **pip install tsextract**

<code> conda </code>
> **conda install -c cydal tsextract**



## Main Features

* Take sliding window of data and with that, create additional columns representing the window. 
* Perform differencing on windowed data to remove non-stationarity. 
* Calculate statistics on windowed and differenced data. These include temporal and spectral statistics functions. 
* Plot visualisations. These include - 
* * Actual vs Predicted line and scatter plots
* * Lag correlation

## Usage

### [Example Notebooks](https://github.com/cydal/tsExtract/tree/master/examples)

```python
print(df.head())
```


|                |Date                          |DAYTON_MW                         |
|----------------|-------------------------------|-----------------------------|
| |`2004-12-31 01:00:00`            |`1596.0`            |
|          |`2004-12-31 02:00:00` | `1517.0` |
|          |`2004-12-31 03:00:00`|`1486.0`|
| | `2004-12-31 04:00:00`|`1469.0` |
| |`2004-12-31 05:00:00` | `1472.0` |



Using the main **build_features** function


**build_features** takes in 4 arguments - 
* **Data**: Time series data in 1d. 

* **Request Dictionary**: Dictionary with the function type and parameters
* **Include_tzero** (optional) - This gives the option on whether to include the column t+0. Can be quite handy when implementing difference networks. 
* **target_lag** - Sets lag value. If predicting 10 hours into the future, then a value of 10 should be included. Default is 3. 

```python
from tsextract.feature_extraction.extract import build_features

features_request = {
    "window":[10]
}

features = build_features(df["DAYTON_MW"], features_request, include_tzero=False)
```

The example above sends in a request for a sliding window size of 10. What is returned is a dataframe with 10 columns equal to the window size passed in. The final column is the target column with values shifted 3 time steps in the future. 


![enter image description here](https://i.postimg.cc/SRQTtbnH/Screenshot-2020-11-11-at-00-12-11.png)


### Features

* **window**: Takes sliding window of the data. Parameter(s) passed in as a list. A single value will take a sliding window corresponding to that value. A parameter of 10 will take windows from 1 to 10. If [5, 10] is passed in instead, then a window of 5 to 10 time steps will be taken instead. 

* **window_statistic**: This performs windowing like above, but then applies specified statistic operation to reduce matrix to a vector of 1d. 

* **difference/momentum/force**: Performs differencing by subtracting from the value in the present time step, the value in the previous time step. The parameter expected is a list of size 2 or 3. Just like in windowing, the first value refers to the window size. Two windowing values may also be passed in for windows in that range. 
The final value is the lag, this refers to the differencing lag for subtraction. A difference lag of 1 means values are subtracted from immediate past values (t3-t2, t2-t1, t1-t0 e.t.c) while a difference lag of 3 will subtract from 3 time steps before (t6-t3, t5-t2, t4-t1 e.t.c).
Momentum & Force are 2nd & 3rd order differences. 

* **difference_statistic/momentum_statistic/force_statistic**: Similarly, this performs the operations described above, but then applies the specified statistic. 

```python
from tsextract.feature_extraction.extract import build_features
from tsextract.domain.statistics import median, mean, skew, kurtosis
from tsextract.domain.temporal import abs_energy

features_request = {
    "window":[2], 
    "window_statistic":[24, median], 
    "difference":[12, 10],
    "difference_statistic":[15, 10, abs_energy], 
}

features = build_features(df["DAYTON_MW"], features_request, include_tzero=True, target_lag=3)
```

![enter image description here](https://i.postimg.cc/VvVhrsgm/Screenshot-2020-11-11-at-01-00-16.png)

# Summary Statistics


As described above, rather than take raw windowing or differencing matrix values, it is possible to take some summary statistic of it. See supported features. 


| Statistics      | Temporal | Spectral   |
| :---        |    :----:   |          ---: |
| Mean      | Absolute Energy       | Spectral Centroid   |
| Median   | AUC        |      |
| Range   | Mean Absolute Difference        |       |
| Standard Deviation   | Moment        |      |
| Minimum   | Autocorrelation        |     |
| Maximum   | Zero Crossing Rate         |   |
| Range   |         |      |
| Variance   |         |     |
| Kurtosis   |         |    |
| Skew   |         |     |
| IQR   |         |     |
| MAE   |         |     |
| RMSE   |         |     |




## Dependencies

* pandas >= 1.0.3
* seaborn >= 0.10.1
* statsmodels >= 0.11.1
* scipy >= 1.5.0
* matplotlib >= 3.2.1
* numpy >= 1.16.4


## License

[GNU GPL V3](http://www.gnu.org/licenses/quick-guide-gplv3.html)


# Contribute

Contributors of all experience levels are welcome. Please see the contributing guide. 


### Source Code

<code> You can get the latest source code </code>

> git clone https://github.com/cydal/tsExtract.git 




%package -n python3-tsextract
Summary:	Time series data preprocessing
Provides:	python-tsextract
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-tsextract
![logo](https://i.postimg.cc/rsVLMjzn/tsextract-logo.jpg)


## tsExtract: Time Series Preprocessing Library

tsExtract is a time series preprocessing library. Using sliding windows, tsExtract allows for the conversion of time series data to a form that can be fed into standard machine learning regression algorithms like Linear Regression, Decision Trees Regression and as well as Deep Learning. 

![enter image description here](https://img.shields.io/badge/LICENSE-GNU_GPL-BLACK) ![enter image description here](https://img.shields.io/badge/pypi-v1.0.0-yellow)  ![enter image description here](https://anaconda.org/cydal/tsextract/badges/version.svg)  ![enter image description here](https://anaconda.org/cydal/tsextract/badges/latest_release_date.svg)  ![enter image description here](https://anaconda.org/cydal/tsextract/badges/platforms.svg)    ![enter image description here](https://anaconda.org/cydal/tsextract/badges/installer/conda.svg)  
[![Open Source Helpers](https://www.codetriage.com/cydal/tsextract/badges/users.svg)](https://www.codetriage.com/cydal/tsextract)



# Installation

<code> pip </code>

> **pip install tsextract**

<code> conda </code>
> **conda install -c cydal tsextract**



## Main Features

* Take sliding window of data and with that, create additional columns representing the window. 
* Perform differencing on windowed data to remove non-stationarity. 
* Calculate statistics on windowed and differenced data. These include temporal and spectral statistics functions. 
* Plot visualisations. These include - 
* * Actual vs Predicted line and scatter plots
* * Lag correlation

## Usage

### [Example Notebooks](https://github.com/cydal/tsExtract/tree/master/examples)

```python
print(df.head())
```


|                |Date                          |DAYTON_MW                         |
|----------------|-------------------------------|-----------------------------|
| |`2004-12-31 01:00:00`            |`1596.0`            |
|          |`2004-12-31 02:00:00` | `1517.0` |
|          |`2004-12-31 03:00:00`|`1486.0`|
| | `2004-12-31 04:00:00`|`1469.0` |
| |`2004-12-31 05:00:00` | `1472.0` |



Using the main **build_features** function


**build_features** takes in 4 arguments - 
* **Data**: Time series data in 1d. 

* **Request Dictionary**: Dictionary with the function type and parameters
* **Include_tzero** (optional) - This gives the option on whether to include the column t+0. Can be quite handy when implementing difference networks. 
* **target_lag** - Sets lag value. If predicting 10 hours into the future, then a value of 10 should be included. Default is 3. 

```python
from tsextract.feature_extraction.extract import build_features

features_request = {
    "window":[10]
}

features = build_features(df["DAYTON_MW"], features_request, include_tzero=False)
```

The example above sends in a request for a sliding window size of 10. What is returned is a dataframe with 10 columns equal to the window size passed in. The final column is the target column with values shifted 3 time steps in the future. 


![enter image description here](https://i.postimg.cc/SRQTtbnH/Screenshot-2020-11-11-at-00-12-11.png)


### Features

* **window**: Takes sliding window of the data. Parameter(s) passed in as a list. A single value will take a sliding window corresponding to that value. A parameter of 10 will take windows from 1 to 10. If [5, 10] is passed in instead, then a window of 5 to 10 time steps will be taken instead. 

* **window_statistic**: This performs windowing like above, but then applies specified statistic operation to reduce matrix to a vector of 1d. 

* **difference/momentum/force**: Performs differencing by subtracting from the value in the present time step, the value in the previous time step. The parameter expected is a list of size 2 or 3. Just like in windowing, the first value refers to the window size. Two windowing values may also be passed in for windows in that range. 
The final value is the lag, this refers to the differencing lag for subtraction. A difference lag of 1 means values are subtracted from immediate past values (t3-t2, t2-t1, t1-t0 e.t.c) while a difference lag of 3 will subtract from 3 time steps before (t6-t3, t5-t2, t4-t1 e.t.c).
Momentum & Force are 2nd & 3rd order differences. 

* **difference_statistic/momentum_statistic/force_statistic**: Similarly, this performs the operations described above, but then applies the specified statistic. 

```python
from tsextract.feature_extraction.extract import build_features
from tsextract.domain.statistics import median, mean, skew, kurtosis
from tsextract.domain.temporal import abs_energy

features_request = {
    "window":[2], 
    "window_statistic":[24, median], 
    "difference":[12, 10],
    "difference_statistic":[15, 10, abs_energy], 
}

features = build_features(df["DAYTON_MW"], features_request, include_tzero=True, target_lag=3)
```

![enter image description here](https://i.postimg.cc/VvVhrsgm/Screenshot-2020-11-11-at-01-00-16.png)

# Summary Statistics


As described above, rather than take raw windowing or differencing matrix values, it is possible to take some summary statistic of it. See supported features. 


| Statistics      | Temporal | Spectral   |
| :---        |    :----:   |          ---: |
| Mean      | Absolute Energy       | Spectral Centroid   |
| Median   | AUC        |      |
| Range   | Mean Absolute Difference        |       |
| Standard Deviation   | Moment        |      |
| Minimum   | Autocorrelation        |     |
| Maximum   | Zero Crossing Rate         |   |
| Range   |         |      |
| Variance   |         |     |
| Kurtosis   |         |    |
| Skew   |         |     |
| IQR   |         |     |
| MAE   |         |     |
| RMSE   |         |     |




## Dependencies

* pandas >= 1.0.3
* seaborn >= 0.10.1
* statsmodels >= 0.11.1
* scipy >= 1.5.0
* matplotlib >= 3.2.1
* numpy >= 1.16.4


## License

[GNU GPL V3](http://www.gnu.org/licenses/quick-guide-gplv3.html)


# Contribute

Contributors of all experience levels are welcome. Please see the contributing guide. 


### Source Code

<code> You can get the latest source code </code>

> git clone https://github.com/cydal/tsExtract.git 




%package help
Summary:	Development documents and examples for tsextract
Provides:	python3-tsextract-doc
%description help
![logo](https://i.postimg.cc/rsVLMjzn/tsextract-logo.jpg)


## tsExtract: Time Series Preprocessing Library

tsExtract is a time series preprocessing library. Using sliding windows, tsExtract allows for the conversion of time series data to a form that can be fed into standard machine learning regression algorithms like Linear Regression, Decision Trees Regression and as well as Deep Learning. 

![enter image description here](https://img.shields.io/badge/LICENSE-GNU_GPL-BLACK) ![enter image description here](https://img.shields.io/badge/pypi-v1.0.0-yellow)  ![enter image description here](https://anaconda.org/cydal/tsextract/badges/version.svg)  ![enter image description here](https://anaconda.org/cydal/tsextract/badges/latest_release_date.svg)  ![enter image description here](https://anaconda.org/cydal/tsextract/badges/platforms.svg)    ![enter image description here](https://anaconda.org/cydal/tsextract/badges/installer/conda.svg)  
[![Open Source Helpers](https://www.codetriage.com/cydal/tsextract/badges/users.svg)](https://www.codetriage.com/cydal/tsextract)



# Installation

<code> pip </code>

> **pip install tsextract**

<code> conda </code>
> **conda install -c cydal tsextract**



## Main Features

* Take sliding window of data and with that, create additional columns representing the window. 
* Perform differencing on windowed data to remove non-stationarity. 
* Calculate statistics on windowed and differenced data. These include temporal and spectral statistics functions. 
* Plot visualisations. These include - 
* * Actual vs Predicted line and scatter plots
* * Lag correlation

## Usage

### [Example Notebooks](https://github.com/cydal/tsExtract/tree/master/examples)

```python
print(df.head())
```


|                |Date                          |DAYTON_MW                         |
|----------------|-------------------------------|-----------------------------|
| |`2004-12-31 01:00:00`            |`1596.0`            |
|          |`2004-12-31 02:00:00` | `1517.0` |
|          |`2004-12-31 03:00:00`|`1486.0`|
| | `2004-12-31 04:00:00`|`1469.0` |
| |`2004-12-31 05:00:00` | `1472.0` |



Using the main **build_features** function


**build_features** takes in 4 arguments - 
* **Data**: Time series data in 1d. 

* **Request Dictionary**: Dictionary with the function type and parameters
* **Include_tzero** (optional) - This gives the option on whether to include the column t+0. Can be quite handy when implementing difference networks. 
* **target_lag** - Sets lag value. If predicting 10 hours into the future, then a value of 10 should be included. Default is 3. 

```python
from tsextract.feature_extraction.extract import build_features

features_request = {
    "window":[10]
}

features = build_features(df["DAYTON_MW"], features_request, include_tzero=False)
```

The example above sends in a request for a sliding window size of 10. What is returned is a dataframe with 10 columns equal to the window size passed in. The final column is the target column with values shifted 3 time steps in the future. 


![enter image description here](https://i.postimg.cc/SRQTtbnH/Screenshot-2020-11-11-at-00-12-11.png)


### Features

* **window**: Takes sliding window of the data. Parameter(s) passed in as a list. A single value will take a sliding window corresponding to that value. A parameter of 10 will take windows from 1 to 10. If [5, 10] is passed in instead, then a window of 5 to 10 time steps will be taken instead. 

* **window_statistic**: This performs windowing like above, but then applies specified statistic operation to reduce matrix to a vector of 1d. 

* **difference/momentum/force**: Performs differencing by subtracting from the value in the present time step, the value in the previous time step. The parameter expected is a list of size 2 or 3. Just like in windowing, the first value refers to the window size. Two windowing values may also be passed in for windows in that range. 
The final value is the lag, this refers to the differencing lag for subtraction. A difference lag of 1 means values are subtracted from immediate past values (t3-t2, t2-t1, t1-t0 e.t.c) while a difference lag of 3 will subtract from 3 time steps before (t6-t3, t5-t2, t4-t1 e.t.c).
Momentum & Force are 2nd & 3rd order differences. 

* **difference_statistic/momentum_statistic/force_statistic**: Similarly, this performs the operations described above, but then applies the specified statistic. 

```python
from tsextract.feature_extraction.extract import build_features
from tsextract.domain.statistics import median, mean, skew, kurtosis
from tsextract.domain.temporal import abs_energy

features_request = {
    "window":[2], 
    "window_statistic":[24, median], 
    "difference":[12, 10],
    "difference_statistic":[15, 10, abs_energy], 
}

features = build_features(df["DAYTON_MW"], features_request, include_tzero=True, target_lag=3)
```

![enter image description here](https://i.postimg.cc/VvVhrsgm/Screenshot-2020-11-11-at-01-00-16.png)

# Summary Statistics


As described above, rather than take raw windowing or differencing matrix values, it is possible to take some summary statistic of it. See supported features. 


| Statistics      | Temporal | Spectral   |
| :---        |    :----:   |          ---: |
| Mean      | Absolute Energy       | Spectral Centroid   |
| Median   | AUC        |      |
| Range   | Mean Absolute Difference        |       |
| Standard Deviation   | Moment        |      |
| Minimum   | Autocorrelation        |     |
| Maximum   | Zero Crossing Rate         |   |
| Range   |         |      |
| Variance   |         |     |
| Kurtosis   |         |    |
| Skew   |         |     |
| IQR   |         |     |
| MAE   |         |     |
| RMSE   |         |     |




## Dependencies

* pandas >= 1.0.3
* seaborn >= 0.10.1
* statsmodels >= 0.11.1
* scipy >= 1.5.0
* matplotlib >= 3.2.1
* numpy >= 1.16.4


## License

[GNU GPL V3](http://www.gnu.org/licenses/quick-guide-gplv3.html)


# Contribute

Contributors of all experience levels are welcome. Please see the contributing guide. 


### Source Code

<code> You can get the latest source code </code>

> git clone https://github.com/cydal/tsExtract.git 




%prep
%autosetup -n tsextract-0.0.9

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-tsextract -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.9-1
- Package Spec generated