summaryrefslogtreecommitdiff
path: root/python-ttach.spec
blob: e9fe43ed61ab8d2d3c90e2dd4dfb3d71ec49ca4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
%global _empty_manifest_terminate_build 0
Name:		python-ttach
Version:	0.0.3
Release:	1
Summary:	Images test time augmentation with PyTorch.
License:	MIT
URL:		https://github.com/qubvel/ttach
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/91/5d/4c49e0eca4206bc25eff4ba89cee51b781466e2e3aad2f1057fd5d2634be/ttach-0.0.3.tar.gz
BuildArch:	noarch

Requires:	python3-pytest

%description

# TTAch
Image Test Time Augmentation with PyTorch!

Similar to what Data Augmentation is doing to the training set, the purpose of Test Time Augmentation is to perform random modifications to the test images. Thus, instead of showing the regular, “clean” images, only once to the trained model, we will show it the augmented images several times. We will then average the predictions of each corresponding image and take that as our final guess [[1](https://towardsdatascience.com/test-time-augmentation-tta-and-how-to-perform-it-with-keras-4ac19b67fb4d)].  
```
           Input
             |           # input batch of images 
        / / /|\ \ \      # apply augmentations (flips, rotation, scale, etc.)
       | | | | | | |     # pass augmented batches through model
       | | | | | | |     # reverse transformations for each batch of masks/labels
        \ \ \ / / /      # merge predictions (mean, max, gmean, etc.)
             |           # output batch of masks/labels
           Output
```
## Table of Contents
1. [Quick Start](#quick-start)
2. [Transforms](#transforms)
3. [Aliases](#aliases)
4. [Merge modes](#merge-modes)
5. [Installation](#installation)

## Quick start

#####  Segmentation model wrapping:
```python
import ttach as tta
tta_model = tta.SegmentationTTAWrapper(model, tta.aliases.d4_transform(), merge_mode='mean')
```
#####  Classification model wrapping:
```python
tta_model = tta.ClassificationTTAWrapper(model, tta.aliases.five_crop_transform())
```

#####  Keypoints model wrapping:
```python
tta_model = tta.KeypointsTTAWrapper(model, tta.aliases.flip_transform(), scaled=True)
```
**Note**: the model must return keypoints in the format `torch([x1, y1, ..., xn, yn])`

## Advanced Examples
#####  Custom transform:
```python
# defined 2 * 2 * 3 * 3 = 36 augmentations !
transforms = tta.Compose(
    [
        tta.HorizontalFlip(),
        tta.Rotate90(angles=[0, 180]),
        tta.Scale(scales=[1, 2, 4]),
        tta.Multiply(factors=[0.9, 1, 1.1]),        
    ]
)

tta_model = tta.SegmentationTTAWrapper(model, transforms)
```
##### Custom model (multi-input / multi-output)
```python
# Example how to process ONE batch on images with TTA
# Here `image`/`mask` are 4D tensors (B, C, H, W), `label` is 2D tensor (B, N)

for transformer in transforms: # custom transforms or e.g. tta.aliases.d4_transform() 

    # augment image
    augmented_image = transformer.augment_image(image)

    # pass to model
    model_output = model(augmented_image, another_input_data)

    # reverse augmentation for mask and label
    deaug_mask = transformer.deaugment_mask(model_output['mask'])
    deaug_label = transformer.deaugment_label(model_output['label'])

    # save results
    labels.append(deaug_mask)
    masks.append(deaug_label)

# reduce results as you want, e.g mean/max/min
label = mean(labels)
mask = mean(masks)
```

## Transforms

| Transform      | Parameters                | Values                            |
|----------------|:-------------------------:|:---------------------------------:|
| HorizontalFlip | -                         | -                                 |
| VerticalFlip   | -                         | -                                 |
| Rotate90       | angles                    | List\[0, 90, 180, 270]            |
| Scale          | scales<br>interpolation   | List\[float]<br>"nearest"/"linear"|
| Resize         | sizes<br>original_size<br>interpolation   | List\[Tuple\[int, int]]<br>Tuple\[int,int]<br>"nearest"/"linear"|
| Add            | values                    | List\[float]                      |
| Multiply       | factors                   | List\[float]                      |
| FiveCrops      | crop_height<br>crop_width | int<br>int                        |

## Aliases

  - flip_transform (horizontal + vertical flips)
  - hflip_transform (horizontal flip)
  - d4_transform (flips + rotation 0, 90, 180, 270)
  - multiscale_transform (scale transform, take scales as input parameter)
  - five_crop_transform (corner crops + center crop)
  - ten_crop_transform (five crops + five crops on horizontal flip)

## Merge modes
 - mean
 - gmean (geometric mean)
 - sum
 - max
 - min
 - tsharpen ([temperature sharpen](https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/107716#latest-624046) with t=0.5)

## Installation
PyPI:
```bash
$ pip install ttach
```
Source:
```bash
$ pip install git+https://github.com/qubvel/ttach
```

## Run tests

```bash
docker build -f Dockerfile.dev -t ttach:dev . && docker run --rm ttach:dev pytest -p no:cacheprovider
```




%package -n python3-ttach
Summary:	Images test time augmentation with PyTorch.
Provides:	python-ttach
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-ttach

# TTAch
Image Test Time Augmentation with PyTorch!

Similar to what Data Augmentation is doing to the training set, the purpose of Test Time Augmentation is to perform random modifications to the test images. Thus, instead of showing the regular, “clean” images, only once to the trained model, we will show it the augmented images several times. We will then average the predictions of each corresponding image and take that as our final guess [[1](https://towardsdatascience.com/test-time-augmentation-tta-and-how-to-perform-it-with-keras-4ac19b67fb4d)].  
```
           Input
             |           # input batch of images 
        / / /|\ \ \      # apply augmentations (flips, rotation, scale, etc.)
       | | | | | | |     # pass augmented batches through model
       | | | | | | |     # reverse transformations for each batch of masks/labels
        \ \ \ / / /      # merge predictions (mean, max, gmean, etc.)
             |           # output batch of masks/labels
           Output
```
## Table of Contents
1. [Quick Start](#quick-start)
2. [Transforms](#transforms)
3. [Aliases](#aliases)
4. [Merge modes](#merge-modes)
5. [Installation](#installation)

## Quick start

#####  Segmentation model wrapping:
```python
import ttach as tta
tta_model = tta.SegmentationTTAWrapper(model, tta.aliases.d4_transform(), merge_mode='mean')
```
#####  Classification model wrapping:
```python
tta_model = tta.ClassificationTTAWrapper(model, tta.aliases.five_crop_transform())
```

#####  Keypoints model wrapping:
```python
tta_model = tta.KeypointsTTAWrapper(model, tta.aliases.flip_transform(), scaled=True)
```
**Note**: the model must return keypoints in the format `torch([x1, y1, ..., xn, yn])`

## Advanced Examples
#####  Custom transform:
```python
# defined 2 * 2 * 3 * 3 = 36 augmentations !
transforms = tta.Compose(
    [
        tta.HorizontalFlip(),
        tta.Rotate90(angles=[0, 180]),
        tta.Scale(scales=[1, 2, 4]),
        tta.Multiply(factors=[0.9, 1, 1.1]),        
    ]
)

tta_model = tta.SegmentationTTAWrapper(model, transforms)
```
##### Custom model (multi-input / multi-output)
```python
# Example how to process ONE batch on images with TTA
# Here `image`/`mask` are 4D tensors (B, C, H, W), `label` is 2D tensor (B, N)

for transformer in transforms: # custom transforms or e.g. tta.aliases.d4_transform() 

    # augment image
    augmented_image = transformer.augment_image(image)

    # pass to model
    model_output = model(augmented_image, another_input_data)

    # reverse augmentation for mask and label
    deaug_mask = transformer.deaugment_mask(model_output['mask'])
    deaug_label = transformer.deaugment_label(model_output['label'])

    # save results
    labels.append(deaug_mask)
    masks.append(deaug_label)

# reduce results as you want, e.g mean/max/min
label = mean(labels)
mask = mean(masks)
```

## Transforms

| Transform      | Parameters                | Values                            |
|----------------|:-------------------------:|:---------------------------------:|
| HorizontalFlip | -                         | -                                 |
| VerticalFlip   | -                         | -                                 |
| Rotate90       | angles                    | List\[0, 90, 180, 270]            |
| Scale          | scales<br>interpolation   | List\[float]<br>"nearest"/"linear"|
| Resize         | sizes<br>original_size<br>interpolation   | List\[Tuple\[int, int]]<br>Tuple\[int,int]<br>"nearest"/"linear"|
| Add            | values                    | List\[float]                      |
| Multiply       | factors                   | List\[float]                      |
| FiveCrops      | crop_height<br>crop_width | int<br>int                        |

## Aliases

  - flip_transform (horizontal + vertical flips)
  - hflip_transform (horizontal flip)
  - d4_transform (flips + rotation 0, 90, 180, 270)
  - multiscale_transform (scale transform, take scales as input parameter)
  - five_crop_transform (corner crops + center crop)
  - ten_crop_transform (five crops + five crops on horizontal flip)

## Merge modes
 - mean
 - gmean (geometric mean)
 - sum
 - max
 - min
 - tsharpen ([temperature sharpen](https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/107716#latest-624046) with t=0.5)

## Installation
PyPI:
```bash
$ pip install ttach
```
Source:
```bash
$ pip install git+https://github.com/qubvel/ttach
```

## Run tests

```bash
docker build -f Dockerfile.dev -t ttach:dev . && docker run --rm ttach:dev pytest -p no:cacheprovider
```




%package help
Summary:	Development documents and examples for ttach
Provides:	python3-ttach-doc
%description help

# TTAch
Image Test Time Augmentation with PyTorch!

Similar to what Data Augmentation is doing to the training set, the purpose of Test Time Augmentation is to perform random modifications to the test images. Thus, instead of showing the regular, “clean” images, only once to the trained model, we will show it the augmented images several times. We will then average the predictions of each corresponding image and take that as our final guess [[1](https://towardsdatascience.com/test-time-augmentation-tta-and-how-to-perform-it-with-keras-4ac19b67fb4d)].  
```
           Input
             |           # input batch of images 
        / / /|\ \ \      # apply augmentations (flips, rotation, scale, etc.)
       | | | | | | |     # pass augmented batches through model
       | | | | | | |     # reverse transformations for each batch of masks/labels
        \ \ \ / / /      # merge predictions (mean, max, gmean, etc.)
             |           # output batch of masks/labels
           Output
```
## Table of Contents
1. [Quick Start](#quick-start)
2. [Transforms](#transforms)
3. [Aliases](#aliases)
4. [Merge modes](#merge-modes)
5. [Installation](#installation)

## Quick start

#####  Segmentation model wrapping:
```python
import ttach as tta
tta_model = tta.SegmentationTTAWrapper(model, tta.aliases.d4_transform(), merge_mode='mean')
```
#####  Classification model wrapping:
```python
tta_model = tta.ClassificationTTAWrapper(model, tta.aliases.five_crop_transform())
```

#####  Keypoints model wrapping:
```python
tta_model = tta.KeypointsTTAWrapper(model, tta.aliases.flip_transform(), scaled=True)
```
**Note**: the model must return keypoints in the format `torch([x1, y1, ..., xn, yn])`

## Advanced Examples
#####  Custom transform:
```python
# defined 2 * 2 * 3 * 3 = 36 augmentations !
transforms = tta.Compose(
    [
        tta.HorizontalFlip(),
        tta.Rotate90(angles=[0, 180]),
        tta.Scale(scales=[1, 2, 4]),
        tta.Multiply(factors=[0.9, 1, 1.1]),        
    ]
)

tta_model = tta.SegmentationTTAWrapper(model, transforms)
```
##### Custom model (multi-input / multi-output)
```python
# Example how to process ONE batch on images with TTA
# Here `image`/`mask` are 4D tensors (B, C, H, W), `label` is 2D tensor (B, N)

for transformer in transforms: # custom transforms or e.g. tta.aliases.d4_transform() 

    # augment image
    augmented_image = transformer.augment_image(image)

    # pass to model
    model_output = model(augmented_image, another_input_data)

    # reverse augmentation for mask and label
    deaug_mask = transformer.deaugment_mask(model_output['mask'])
    deaug_label = transformer.deaugment_label(model_output['label'])

    # save results
    labels.append(deaug_mask)
    masks.append(deaug_label)

# reduce results as you want, e.g mean/max/min
label = mean(labels)
mask = mean(masks)
```

## Transforms

| Transform      | Parameters                | Values                            |
|----------------|:-------------------------:|:---------------------------------:|
| HorizontalFlip | -                         | -                                 |
| VerticalFlip   | -                         | -                                 |
| Rotate90       | angles                    | List\[0, 90, 180, 270]            |
| Scale          | scales<br>interpolation   | List\[float]<br>"nearest"/"linear"|
| Resize         | sizes<br>original_size<br>interpolation   | List\[Tuple\[int, int]]<br>Tuple\[int,int]<br>"nearest"/"linear"|
| Add            | values                    | List\[float]                      |
| Multiply       | factors                   | List\[float]                      |
| FiveCrops      | crop_height<br>crop_width | int<br>int                        |

## Aliases

  - flip_transform (horizontal + vertical flips)
  - hflip_transform (horizontal flip)
  - d4_transform (flips + rotation 0, 90, 180, 270)
  - multiscale_transform (scale transform, take scales as input parameter)
  - five_crop_transform (corner crops + center crop)
  - ten_crop_transform (five crops + five crops on horizontal flip)

## Merge modes
 - mean
 - gmean (geometric mean)
 - sum
 - max
 - min
 - tsharpen ([temperature sharpen](https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/107716#latest-624046) with t=0.5)

## Installation
PyPI:
```bash
$ pip install ttach
```
Source:
```bash
$ pip install git+https://github.com/qubvel/ttach
```

## Run tests

```bash
docker build -f Dockerfile.dev -t ttach:dev . && docker run --rm ttach:dev pytest -p no:cacheprovider
```




%prep
%autosetup -n ttach-0.0.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-ttach -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.3-1
- Package Spec generated