summaryrefslogtreecommitdiff
path: root/python-unidip.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-unidip.spec')
-rw-r--r--python-unidip.spec194
1 files changed, 194 insertions, 0 deletions
diff --git a/python-unidip.spec b/python-unidip.spec
new file mode 100644
index 0000000..7e00917
--- /dev/null
+++ b/python-unidip.spec
@@ -0,0 +1,194 @@
+%global _empty_manifest_terminate_build 0
+Name: python-unidip
+Version: 0.1.1
+Release: 1
+Summary: Python port of the UniDip clustering algorithm
+License: GPL
+URL: http://github.com/BenjaminDoran/unidip
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/1c/22/e2b39fd524297ecc6c439748c4e20d56a97a8829f2b2b1897365a0f23a19/unidip-0.1.1.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-matplotlib
+
+%description
+# UniDip Python Port
+
+See reference paper: http://www.kdd.org/kdd2016/subtopic/view/skinny-dip-clustering-in-a-sea-of-noise
+
+UniDip is a noise robust clustering algorithm for 1 dimensional numeric data. It recursively extracts peaks of density in the data utilizing the Hartigan Dip-test of Unimodality.
+
+## Install
+
+coming soon...
+```
+pip3.6 install unidip
+```
+
+## Examples
+
+### Basic Usage
+
+```python
+from unidip import UniDip
+
+# create bi-modal distribution
+dat = np.concatenate([np.random.randn(200)-3, np.random.randn(200)+3])
+
+# sort data so returned indices are meaningful
+dat = np.msort(dat)
+
+# get start and stop indices of peaks
+intervals = UniDip(dat).run()
+```
+
+### Advanced Options
+
+* **alpha**: control sensitivity as p-value. Default is 0.05. increase to isolate more peaks with less confidence. Or, decrease to isolate only peaks that are least likely to be noise.
+* **mrg_dst**: Defines how close intervals must be before they are merged.
+* **ntrials**: how many trials are run in Hartigan Dip Test more trials adds confidance but takes longer.
+
+```python
+intervals = UniDip(dat, alpha=0.001, ntrials=1000, mrg_dst=5).run()
+```
+
+
+
+%package -n python3-unidip
+Summary: Python port of the UniDip clustering algorithm
+Provides: python-unidip
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-unidip
+# UniDip Python Port
+
+See reference paper: http://www.kdd.org/kdd2016/subtopic/view/skinny-dip-clustering-in-a-sea-of-noise
+
+UniDip is a noise robust clustering algorithm for 1 dimensional numeric data. It recursively extracts peaks of density in the data utilizing the Hartigan Dip-test of Unimodality.
+
+## Install
+
+coming soon...
+```
+pip3.6 install unidip
+```
+
+## Examples
+
+### Basic Usage
+
+```python
+from unidip import UniDip
+
+# create bi-modal distribution
+dat = np.concatenate([np.random.randn(200)-3, np.random.randn(200)+3])
+
+# sort data so returned indices are meaningful
+dat = np.msort(dat)
+
+# get start and stop indices of peaks
+intervals = UniDip(dat).run()
+```
+
+### Advanced Options
+
+* **alpha**: control sensitivity as p-value. Default is 0.05. increase to isolate more peaks with less confidence. Or, decrease to isolate only peaks that are least likely to be noise.
+* **mrg_dst**: Defines how close intervals must be before they are merged.
+* **ntrials**: how many trials are run in Hartigan Dip Test more trials adds confidance but takes longer.
+
+```python
+intervals = UniDip(dat, alpha=0.001, ntrials=1000, mrg_dst=5).run()
+```
+
+
+
+%package help
+Summary: Development documents and examples for unidip
+Provides: python3-unidip-doc
+%description help
+# UniDip Python Port
+
+See reference paper: http://www.kdd.org/kdd2016/subtopic/view/skinny-dip-clustering-in-a-sea-of-noise
+
+UniDip is a noise robust clustering algorithm for 1 dimensional numeric data. It recursively extracts peaks of density in the data utilizing the Hartigan Dip-test of Unimodality.
+
+## Install
+
+coming soon...
+```
+pip3.6 install unidip
+```
+
+## Examples
+
+### Basic Usage
+
+```python
+from unidip import UniDip
+
+# create bi-modal distribution
+dat = np.concatenate([np.random.randn(200)-3, np.random.randn(200)+3])
+
+# sort data so returned indices are meaningful
+dat = np.msort(dat)
+
+# get start and stop indices of peaks
+intervals = UniDip(dat).run()
+```
+
+### Advanced Options
+
+* **alpha**: control sensitivity as p-value. Default is 0.05. increase to isolate more peaks with less confidence. Or, decrease to isolate only peaks that are least likely to be noise.
+* **mrg_dst**: Defines how close intervals must be before they are merged.
+* **ntrials**: how many trials are run in Hartigan Dip Test more trials adds confidance but takes longer.
+
+```python
+intervals = UniDip(dat, alpha=0.001, ntrials=1000, mrg_dst=5).run()
+```
+
+
+
+%prep
+%autosetup -n unidip-0.1.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-unidip -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.1-1
+- Package Spec generated