summaryrefslogtreecommitdiff
path: root/python-veritastool.spec
blob: 9565ba4ffe2144c2fe70a4033be5cfe5a3eaa2ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
%global _empty_manifest_terminate_build 0
Name:		python-veritastool
Version:	2.0.2
Release:	1
Summary:	Veritas Diagnosis tool for fairness & transparency assessment.
License:	Apache 2.0
URL:		https://pypi.org/project/veritastool/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/9c/1f/eb84cfd6e3eff54e3caed29ad0bbac18fb19866812d4e497e6248cb94567/veritastool-2.0.2.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-scikit-learn
Requires:	python3-pandas
Requires:	python3-ipywidgets
Requires:	python3-ipython
Requires:	python3-matplotlib
Requires:	python3-tqdm
Requires:	python3-phik
Requires:	python3-shap
Requires:	python3-matplotlib-inline
Requires:	python3-pytest
Requires:	python3-Jinja2

%description


# Veritas Toolkit
[![codecov](https://codecov.io/gh/mas-veritas2/veritastool/branch/main/graph/badge.svg?token=0J3QEBHBDU)](https://codecov.io/gh/mas-veritas2/veritastool)
[![PyPI version](https://badge.fury.io/py/veritastool.svg)](https://badge.fury.io/py/veritastool)[![Python 3.10](https://img.shields.io/badge/python-3.10-green)](https://www.python.org/downloads/release/python-3110/) 
[![Python 3.9](https://img.shields.io/badge/python-3.9-green)](https://www.python.org/downloads/release/python-3916/) 
[![Python 3.8](https://img.shields.io/badge/python-3.8-green)](https://www.python.org/downloads/release/python-3816/)
[![GitHub license](https://img.shields.io/github/license/mas-veritas2/veritastool.svg)](https://github.com/mas-veritas2/veritastool/blob/master/license.txt)
[![Python package](https://github.com/mas-veritas2/veritastool/actions/workflows/python-package.yml/badge.svg)](https://github.com/mas-veritas2/veritastool/actions/workflows/python-package.yml) 




<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/main/icon/veritas_logo_new.png" ></p>


The purpose of this toolkit is to facilitate the adoption of Veritas Methodology on Fairness & Transparency Assessment and spur industry development. It will also
benefit customers by improving the fairness and transparency of financial services delivered by AIDA systems.

  
## Installation

The easiest way to install veritastool is to download it from [`PyPI`](https://pypi.org/project/veritastool/). It's going to install the library itself and its prerequisites as well. It is suggested to create virtual environment with requirements.txt file first.

```python
pip install veritastool
```

Then, you will be able to import the library and use its functionalities. Before we do that, we can run a test function on our sample datasets to see if our codes are performing as expected.

```python
from veritastool.util.utility import test_function_cs
test_function_cs()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/test_evaluate_cs.png" width="800" height="100"></p>

### Initialization ##

You can now import the custom library that you would to use for diagnosis. In this example we will use the Credit Scoring custom library. 

```python
from veritastool.model.modelwrapper import ModelWrapper
from veritastool.model.model_container import ModelContainer
from veritastool.usecases.credit_scoring import CreditScoring
```

Once the relevant use case object (CreditScoring) and model container (ModelContainer) has been imported, you can upload your contents into the container and initialize the object for diagnosis.

```python

import pickle
import numpy as np

#Load Credit Scoring Test Data
# NOTE: Assume current working directory is the root folder of the cloned veritastool repository
file = "./veritastool/examples/data/credit_score_dict.pickle"
input_file = open(file, "rb")
cs = pickle.load(input_file)

#Model Contariner Parameters
y_true = np.array(cs["y_test"])
y_pred = np.array(cs["y_pred"])
y_train = np.array(cs["y_train"])
p_grp = {'SEX': [1], 'MARRIAGE':[1]}
up_grp = {'SEX': [2], 'MARRIAGE':[2]}
x_train = cs["X_train"]
x_test = cs["X_test"]
model_name = "credit_scoring"
model_type = "classification"
y_prob = cs["y_prob"]
model_obj = LogisticRegression(C=0.1)
model_obj.fit(x_train, y_train) #fit the model as required for transparency analysis

#Create Model Container 
container = ModelContainer(y_true, p_grp, model_type, model_name, y_pred, y_prob, y_train, x_train=x_train, \
                           x_test=x_test, model_object=model_obj, up_grp=up_grp)

#Create Use Case Object
cre_sco_obj= CreditScoring(model_params = [container], fair_threshold = 80, fair_concern = "eligible", \
                           fair_priority = "benefit", fair_impact = "normal", perf_metric_name="accuracy", \
                           tran_row_num = [20,40], tran_max_sample = 1000, tran_pdp_feature = ['LIMIT_BAL'], tran_max_display = 10)
                                                     
```
###  API functions ###

Below are the API functions that the user can execute to obtain the fairness and transparency diagnosis of their use cases.

**Evaluate**

The evaluate API function computes all performance and fairness metrics and renders it in a table format (default). It
also highlights the primary performance and fairness metrics (automatic if not specified by user).

```python
cre_sco_obj.evaluate()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/evaluate_2.png" width="608" height="596"></p>

You can also toggle the widget to view your results in a interactive visualization format.

```python
cre_sco_obj.evaluate(visualize = True)
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/evaluate_2_visualize.png" width="858" height="530"></p>

**Tradeoff**

Computes trade-off between performance and fairness.

```python
cre_sco_obj.tradeoff()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/tradeoff_2.png" width="625" height="516"></p>

** Note: Replace {Balanced Accuracy} with the respective given metrics. 

**Feature Importance**

Computes feature importance of protected features using leave one out analysis.

```python
cre_sco_obj.feature_importance()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/faeture_imp_2.png" width="828" height="653"></p>

**Root Cause**

Computes the importance of variables contributing to the bias.

```python
cre_sco_obj.root_cause()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/rootcause_2.png" width="581" height="530"></p>

**Mitigate**

User can choose methods to mitigate the bias.

```python
mitigated = cre_sco_obj.mitigate(p_var=[], method=['reweigh', 'correlation', 'threshold'])
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/mitigate_2.png" width="576" height="662"></p>

**Explain**

Runs the transparency analysis - global & local interpretability, partial dependence analysis and permutation importance

```python
#run the entire transparency analysis
cre_sco_obj.explain()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/explain_2.png" width="624" height="1034"></p>

```python
#get the local interpretability plot for specific row index and model
cre_sco_obj.explain(local_row_num = 20)
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/local_2.png" width="514" height="464"></p>

**Compile**

Generates model artifact file in JSON format. This function also runs all the API functions if it hasn't already been run.

```python
cre_sco_obj.compile()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/compile_2.png" width="529" height="209"></p>

**Model Artifact**

A JSON file that stores all the results from all the APIs.

Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/json_2.png" width="456" height="494"></p>

## Examples

You may refer to our example notebooks below to see how the toolkit can be applied:

| Filename               | Description      | 
| -----------------------| -------------    | 
| [`CS_Demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/CS_demo.ipynb)| Tutorial notebook to diagnose a credit scoring model for predicting customers' loan repayment.            | 
| [`CM_Demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/customer_marketing_example/CM_demo.ipynb)          | Tutorial notebook to diagnose a customer marketing uplift model for selecting existing customers for a marketing call to increase the sales of loan product.            |
| [`BaseClassification_demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/BaseClassification_demo.ipynb)          | Tutorial notebook for a multi-class propensity model           | 
| [`BaseRegression_demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/BaseRegression_demo.ipynb)          | Tutorial notebook for a prediciton of a continuous target variable          | 
| [`PUW_demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/PUW_demo.ipynb)          | Tutorial notebook for a binary classification model to predict whether to award insurance policy by assessing risk          | 
| [`NewUseCaseCreation_demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/NewUseCaseCreation_demo.ipynb)          | Tutorial notebook to create a new use case note-book and add custom metrics         | 
| [`nonPythonModel_customMetric_demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/nonPythonModel_customMetric_demo.ipynb)          | Tutorial notebook to diagnose a credit scoring model by LibSVM (non-Python) with custom metric.            | 

## License

Veritas Toolkit is licensed under the Apache License, Version 2.0 - see [`LICENSE`](https://raw.githubusercontent.com/mas-veritas2/veritastool/master/license.txt) for more details. 




%package -n python3-veritastool
Summary:	Veritas Diagnosis tool for fairness & transparency assessment.
Provides:	python-veritastool
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-veritastool


# Veritas Toolkit
[![codecov](https://codecov.io/gh/mas-veritas2/veritastool/branch/main/graph/badge.svg?token=0J3QEBHBDU)](https://codecov.io/gh/mas-veritas2/veritastool)
[![PyPI version](https://badge.fury.io/py/veritastool.svg)](https://badge.fury.io/py/veritastool)[![Python 3.10](https://img.shields.io/badge/python-3.10-green)](https://www.python.org/downloads/release/python-3110/) 
[![Python 3.9](https://img.shields.io/badge/python-3.9-green)](https://www.python.org/downloads/release/python-3916/) 
[![Python 3.8](https://img.shields.io/badge/python-3.8-green)](https://www.python.org/downloads/release/python-3816/)
[![GitHub license](https://img.shields.io/github/license/mas-veritas2/veritastool.svg)](https://github.com/mas-veritas2/veritastool/blob/master/license.txt)
[![Python package](https://github.com/mas-veritas2/veritastool/actions/workflows/python-package.yml/badge.svg)](https://github.com/mas-veritas2/veritastool/actions/workflows/python-package.yml) 




<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/main/icon/veritas_logo_new.png" ></p>


The purpose of this toolkit is to facilitate the adoption of Veritas Methodology on Fairness & Transparency Assessment and spur industry development. It will also
benefit customers by improving the fairness and transparency of financial services delivered by AIDA systems.

  
## Installation

The easiest way to install veritastool is to download it from [`PyPI`](https://pypi.org/project/veritastool/). It's going to install the library itself and its prerequisites as well. It is suggested to create virtual environment with requirements.txt file first.

```python
pip install veritastool
```

Then, you will be able to import the library and use its functionalities. Before we do that, we can run a test function on our sample datasets to see if our codes are performing as expected.

```python
from veritastool.util.utility import test_function_cs
test_function_cs()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/test_evaluate_cs.png" width="800" height="100"></p>

### Initialization ##

You can now import the custom library that you would to use for diagnosis. In this example we will use the Credit Scoring custom library. 

```python
from veritastool.model.modelwrapper import ModelWrapper
from veritastool.model.model_container import ModelContainer
from veritastool.usecases.credit_scoring import CreditScoring
```

Once the relevant use case object (CreditScoring) and model container (ModelContainer) has been imported, you can upload your contents into the container and initialize the object for diagnosis.

```python

import pickle
import numpy as np

#Load Credit Scoring Test Data
# NOTE: Assume current working directory is the root folder of the cloned veritastool repository
file = "./veritastool/examples/data/credit_score_dict.pickle"
input_file = open(file, "rb")
cs = pickle.load(input_file)

#Model Contariner Parameters
y_true = np.array(cs["y_test"])
y_pred = np.array(cs["y_pred"])
y_train = np.array(cs["y_train"])
p_grp = {'SEX': [1], 'MARRIAGE':[1]}
up_grp = {'SEX': [2], 'MARRIAGE':[2]}
x_train = cs["X_train"]
x_test = cs["X_test"]
model_name = "credit_scoring"
model_type = "classification"
y_prob = cs["y_prob"]
model_obj = LogisticRegression(C=0.1)
model_obj.fit(x_train, y_train) #fit the model as required for transparency analysis

#Create Model Container 
container = ModelContainer(y_true, p_grp, model_type, model_name, y_pred, y_prob, y_train, x_train=x_train, \
                           x_test=x_test, model_object=model_obj, up_grp=up_grp)

#Create Use Case Object
cre_sco_obj= CreditScoring(model_params = [container], fair_threshold = 80, fair_concern = "eligible", \
                           fair_priority = "benefit", fair_impact = "normal", perf_metric_name="accuracy", \
                           tran_row_num = [20,40], tran_max_sample = 1000, tran_pdp_feature = ['LIMIT_BAL'], tran_max_display = 10)
                                                     
```
###  API functions ###

Below are the API functions that the user can execute to obtain the fairness and transparency diagnosis of their use cases.

**Evaluate**

The evaluate API function computes all performance and fairness metrics and renders it in a table format (default). It
also highlights the primary performance and fairness metrics (automatic if not specified by user).

```python
cre_sco_obj.evaluate()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/evaluate_2.png" width="608" height="596"></p>

You can also toggle the widget to view your results in a interactive visualization format.

```python
cre_sco_obj.evaluate(visualize = True)
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/evaluate_2_visualize.png" width="858" height="530"></p>

**Tradeoff**

Computes trade-off between performance and fairness.

```python
cre_sco_obj.tradeoff()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/tradeoff_2.png" width="625" height="516"></p>

** Note: Replace {Balanced Accuracy} with the respective given metrics. 

**Feature Importance**

Computes feature importance of protected features using leave one out analysis.

```python
cre_sco_obj.feature_importance()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/faeture_imp_2.png" width="828" height="653"></p>

**Root Cause**

Computes the importance of variables contributing to the bias.

```python
cre_sco_obj.root_cause()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/rootcause_2.png" width="581" height="530"></p>

**Mitigate**

User can choose methods to mitigate the bias.

```python
mitigated = cre_sco_obj.mitigate(p_var=[], method=['reweigh', 'correlation', 'threshold'])
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/mitigate_2.png" width="576" height="662"></p>

**Explain**

Runs the transparency analysis - global & local interpretability, partial dependence analysis and permutation importance

```python
#run the entire transparency analysis
cre_sco_obj.explain()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/explain_2.png" width="624" height="1034"></p>

```python
#get the local interpretability plot for specific row index and model
cre_sco_obj.explain(local_row_num = 20)
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/local_2.png" width="514" height="464"></p>

**Compile**

Generates model artifact file in JSON format. This function also runs all the API functions if it hasn't already been run.

```python
cre_sco_obj.compile()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/compile_2.png" width="529" height="209"></p>

**Model Artifact**

A JSON file that stores all the results from all the APIs.

Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/json_2.png" width="456" height="494"></p>

## Examples

You may refer to our example notebooks below to see how the toolkit can be applied:

| Filename               | Description      | 
| -----------------------| -------------    | 
| [`CS_Demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/CS_demo.ipynb)| Tutorial notebook to diagnose a credit scoring model for predicting customers' loan repayment.            | 
| [`CM_Demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/customer_marketing_example/CM_demo.ipynb)          | Tutorial notebook to diagnose a customer marketing uplift model for selecting existing customers for a marketing call to increase the sales of loan product.            |
| [`BaseClassification_demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/BaseClassification_demo.ipynb)          | Tutorial notebook for a multi-class propensity model           | 
| [`BaseRegression_demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/BaseRegression_demo.ipynb)          | Tutorial notebook for a prediciton of a continuous target variable          | 
| [`PUW_demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/PUW_demo.ipynb)          | Tutorial notebook for a binary classification model to predict whether to award insurance policy by assessing risk          | 
| [`NewUseCaseCreation_demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/NewUseCaseCreation_demo.ipynb)          | Tutorial notebook to create a new use case note-book and add custom metrics         | 
| [`nonPythonModel_customMetric_demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/nonPythonModel_customMetric_demo.ipynb)          | Tutorial notebook to diagnose a credit scoring model by LibSVM (non-Python) with custom metric.            | 

## License

Veritas Toolkit is licensed under the Apache License, Version 2.0 - see [`LICENSE`](https://raw.githubusercontent.com/mas-veritas2/veritastool/master/license.txt) for more details. 




%package help
Summary:	Development documents and examples for veritastool
Provides:	python3-veritastool-doc
%description help


# Veritas Toolkit
[![codecov](https://codecov.io/gh/mas-veritas2/veritastool/branch/main/graph/badge.svg?token=0J3QEBHBDU)](https://codecov.io/gh/mas-veritas2/veritastool)
[![PyPI version](https://badge.fury.io/py/veritastool.svg)](https://badge.fury.io/py/veritastool)[![Python 3.10](https://img.shields.io/badge/python-3.10-green)](https://www.python.org/downloads/release/python-3110/) 
[![Python 3.9](https://img.shields.io/badge/python-3.9-green)](https://www.python.org/downloads/release/python-3916/) 
[![Python 3.8](https://img.shields.io/badge/python-3.8-green)](https://www.python.org/downloads/release/python-3816/)
[![GitHub license](https://img.shields.io/github/license/mas-veritas2/veritastool.svg)](https://github.com/mas-veritas2/veritastool/blob/master/license.txt)
[![Python package](https://github.com/mas-veritas2/veritastool/actions/workflows/python-package.yml/badge.svg)](https://github.com/mas-veritas2/veritastool/actions/workflows/python-package.yml) 




<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/main/icon/veritas_logo_new.png" ></p>


The purpose of this toolkit is to facilitate the adoption of Veritas Methodology on Fairness & Transparency Assessment and spur industry development. It will also
benefit customers by improving the fairness and transparency of financial services delivered by AIDA systems.

  
## Installation

The easiest way to install veritastool is to download it from [`PyPI`](https://pypi.org/project/veritastool/). It's going to install the library itself and its prerequisites as well. It is suggested to create virtual environment with requirements.txt file first.

```python
pip install veritastool
```

Then, you will be able to import the library and use its functionalities. Before we do that, we can run a test function on our sample datasets to see if our codes are performing as expected.

```python
from veritastool.util.utility import test_function_cs
test_function_cs()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/test_evaluate_cs.png" width="800" height="100"></p>

### Initialization ##

You can now import the custom library that you would to use for diagnosis. In this example we will use the Credit Scoring custom library. 

```python
from veritastool.model.modelwrapper import ModelWrapper
from veritastool.model.model_container import ModelContainer
from veritastool.usecases.credit_scoring import CreditScoring
```

Once the relevant use case object (CreditScoring) and model container (ModelContainer) has been imported, you can upload your contents into the container and initialize the object for diagnosis.

```python

import pickle
import numpy as np

#Load Credit Scoring Test Data
# NOTE: Assume current working directory is the root folder of the cloned veritastool repository
file = "./veritastool/examples/data/credit_score_dict.pickle"
input_file = open(file, "rb")
cs = pickle.load(input_file)

#Model Contariner Parameters
y_true = np.array(cs["y_test"])
y_pred = np.array(cs["y_pred"])
y_train = np.array(cs["y_train"])
p_grp = {'SEX': [1], 'MARRIAGE':[1]}
up_grp = {'SEX': [2], 'MARRIAGE':[2]}
x_train = cs["X_train"]
x_test = cs["X_test"]
model_name = "credit_scoring"
model_type = "classification"
y_prob = cs["y_prob"]
model_obj = LogisticRegression(C=0.1)
model_obj.fit(x_train, y_train) #fit the model as required for transparency analysis

#Create Model Container 
container = ModelContainer(y_true, p_grp, model_type, model_name, y_pred, y_prob, y_train, x_train=x_train, \
                           x_test=x_test, model_object=model_obj, up_grp=up_grp)

#Create Use Case Object
cre_sco_obj= CreditScoring(model_params = [container], fair_threshold = 80, fair_concern = "eligible", \
                           fair_priority = "benefit", fair_impact = "normal", perf_metric_name="accuracy", \
                           tran_row_num = [20,40], tran_max_sample = 1000, tran_pdp_feature = ['LIMIT_BAL'], tran_max_display = 10)
                                                     
```
###  API functions ###

Below are the API functions that the user can execute to obtain the fairness and transparency diagnosis of their use cases.

**Evaluate**

The evaluate API function computes all performance and fairness metrics and renders it in a table format (default). It
also highlights the primary performance and fairness metrics (automatic if not specified by user).

```python
cre_sco_obj.evaluate()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/evaluate_2.png" width="608" height="596"></p>

You can also toggle the widget to view your results in a interactive visualization format.

```python
cre_sco_obj.evaluate(visualize = True)
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/evaluate_2_visualize.png" width="858" height="530"></p>

**Tradeoff**

Computes trade-off between performance and fairness.

```python
cre_sco_obj.tradeoff()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/tradeoff_2.png" width="625" height="516"></p>

** Note: Replace {Balanced Accuracy} with the respective given metrics. 

**Feature Importance**

Computes feature importance of protected features using leave one out analysis.

```python
cre_sco_obj.feature_importance()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/faeture_imp_2.png" width="828" height="653"></p>

**Root Cause**

Computes the importance of variables contributing to the bias.

```python
cre_sco_obj.root_cause()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/rootcause_2.png" width="581" height="530"></p>

**Mitigate**

User can choose methods to mitigate the bias.

```python
mitigated = cre_sco_obj.mitigate(p_var=[], method=['reweigh', 'correlation', 'threshold'])
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/mitigate_2.png" width="576" height="662"></p>

**Explain**

Runs the transparency analysis - global & local interpretability, partial dependence analysis and permutation importance

```python
#run the entire transparency analysis
cre_sco_obj.explain()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/explain_2.png" width="624" height="1034"></p>

```python
#get the local interpretability plot for specific row index and model
cre_sco_obj.explain(local_row_num = 20)
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/local_2.png" width="514" height="464"></p>

**Compile**

Generates model artifact file in JSON format. This function also runs all the API functions if it hasn't already been run.

```python
cre_sco_obj.compile()
```
Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/compile_2.png" width="529" height="209"></p>

**Model Artifact**

A JSON file that stores all the results from all the APIs.

Output:

<p align="center"><img src="https://raw.githubusercontent.com/mas-veritas2/veritastool/master/icon/json_2.png" width="456" height="494"></p>

## Examples

You may refer to our example notebooks below to see how the toolkit can be applied:

| Filename               | Description      | 
| -----------------------| -------------    | 
| [`CS_Demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/CS_demo.ipynb)| Tutorial notebook to diagnose a credit scoring model for predicting customers' loan repayment.            | 
| [`CM_Demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/customer_marketing_example/CM_demo.ipynb)          | Tutorial notebook to diagnose a customer marketing uplift model for selecting existing customers for a marketing call to increase the sales of loan product.            |
| [`BaseClassification_demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/BaseClassification_demo.ipynb)          | Tutorial notebook for a multi-class propensity model           | 
| [`BaseRegression_demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/BaseRegression_demo.ipynb)          | Tutorial notebook for a prediciton of a continuous target variable          | 
| [`PUW_demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/PUW_demo.ipynb)          | Tutorial notebook for a binary classification model to predict whether to award insurance policy by assessing risk          | 
| [`NewUseCaseCreation_demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/NewUseCaseCreation_demo.ipynb)          | Tutorial notebook to create a new use case note-book and add custom metrics         | 
| [`nonPythonModel_customMetric_demo.ipynb`](https://github.com/mas-veritas2/veritastool/blob/master/veritastool/examples/nonPythonModel_customMetric_demo.ipynb)          | Tutorial notebook to diagnose a credit scoring model by LibSVM (non-Python) with custom metric.            | 

## License

Veritas Toolkit is licensed under the Apache License, Version 2.0 - see [`LICENSE`](https://raw.githubusercontent.com/mas-veritas2/veritastool/master/license.txt) for more details. 




%prep
%autosetup -n veritastool-2.0.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-veritastool -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.2-1
- Package Spec generated