summaryrefslogtreecommitdiff
path: root/python-veroku.spec
blob: 0ea802e7aaa435896f79bae54931ad9ddad4279e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
%global _empty_manifest_terminate_build 0
Name:		python-veroku
Version:	1.0.171
Release:	1
Summary:	An open source library for building and performing inference with probabilistic graphical models.
License:	BSD 3-Clause License
URL:		https://github.com/ejlouw/veroku
Source0:	https://mirrors.aliyun.com/pypi/web/packages/82/55/ea160d2b13cc3179e6b3443d143b58bd4d815fc924229dfe7070c9849aea/veroku-1.0.171.tar.gz
BuildArch:	noarch

Requires:	python3-numdifftools
Requires:	python3-scipy
Requires:	python3-matplotlib
Requires:	python3-seaborn
Requires:	python3-graphviz
Requires:	python3-Pillow
Requires:	python3-ipython
Requires:	python3-pandas
Requires:	python3-tqdm
Requires:	python3-ipympl
Requires:	python3-numpy
Requires:	python3-networkx

%description
<div align="center">
  <img src="logo.svg">
</div>

[comment]: # (doc-start)

![Build Status](https://github.com/ejlouw/veroku/workflows/CI_PIPELINE/badge.svg?branch=master)

### Installation
For installing through pip:
```bash
pip install veroku
```

To clone this git repo:
```
git clone https://github.com/ejlouw/veroku.git 
cd veroku/
pip install -r requirements.txt
```
It is recommended to use a separate conda virtual environment when installing the dependencies, to avoid interfering
with existing packages. To get started with conda environments, see the
[installation guide](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html).
For more information on using conda environments see
[managing environments guide](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)

### Overview
<div style="text-align: justify">
Veroku is an open source library for building and performing inference with probabilistic graphical models (PGMs) in
python. PGMs provide a framework for performing efficient probabilistic inference with very high dimensional
distributions. A typical example of a well-known type of PGM is the Kalman filter that can be used to obtain
probabilistic estimates of a hidden state of a process or system, given noisy measurements. PGMs can in principle be
used for any problem that involves uncertainty and is therefore applicable to many problems.</div> 

Veroku currently supports the following probability distributions:
* Categorical (sparse and dense implementations)
* Gaussian
* Gaussian mixture<sup>1</sup>
* Linear Gaussian<sup>2</sup>
* Non-linear Gaussian<sup>3</sup>

<sup>1</sup> This class still has some experimental functionality (specifically the Gaussian mixture division methods)
and is, therefore, still in the factors.experimental sub-package.  
<sup>2</sup> Using the Gaussian class - see the Kalman filter example notebook.<br/>
<sup>3</sup>This implementation is still experimental (see the factors.experimental sub-package).


<div style="text-align: justify">
These distributions can be used as factors to represent a factorised distribution. These factors can be used, together
with the <code>cluster_graph</code> module to automatically create valid cluster graphs. Inference can be performed in these graphs
using message passing algorithms. Currently only the LBU (Loopy Belief Update) message-passing algorithm is supported.
</div>

<br/>
Example notebooks:

* [Toy example](https://github.com/ejlouw/veroku/blob/master/examples/slip_on_grass.ipynb)
* [Kalman filter](https://github.com/ejlouw/veroku/blob/master/examples/Kalman_filter.ipynb)
* [Sudoku](https://github.com/ejlouw/veroku/blob/master/examples/sudoku.ipynb)



### On the Roadmap
The following distributions, models and features are on the roadmap to be added to veroku:
* Conditional Gaussian
* Dirichlet distribution
* Wishart distribution
* Normal-Wishart distribution
* Plate models
* Structure Learning
* Causal Inference

### Dependencies
For the python dependencies see the [requirements](https://github.com/ejlouw/veroku/blob/master/requirements.txt) file.
The following additional dependencies are also required for some functionality (these are not installed automatically
 with the `pip install`):

##### Graphviz
See https://graphviz.org/download/ for installation instructions. 

### Contributing
If you would like to contribute to veroku, please see the [contributing guide](https://github.com/ejlouw/veroku/blob/master/contributing.md).

### License
Veroku is released under a 3-Clause BSD license. You can view the license
[here](https://github.com/ejlouw/veroku/blob/master/LICENSE).




%package -n python3-veroku
Summary:	An open source library for building and performing inference with probabilistic graphical models.
Provides:	python-veroku
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-veroku
<div align="center">
  <img src="logo.svg">
</div>

[comment]: # (doc-start)

![Build Status](https://github.com/ejlouw/veroku/workflows/CI_PIPELINE/badge.svg?branch=master)

### Installation
For installing through pip:
```bash
pip install veroku
```

To clone this git repo:
```
git clone https://github.com/ejlouw/veroku.git 
cd veroku/
pip install -r requirements.txt
```
It is recommended to use a separate conda virtual environment when installing the dependencies, to avoid interfering
with existing packages. To get started with conda environments, see the
[installation guide](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html).
For more information on using conda environments see
[managing environments guide](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)

### Overview
<div style="text-align: justify">
Veroku is an open source library for building and performing inference with probabilistic graphical models (PGMs) in
python. PGMs provide a framework for performing efficient probabilistic inference with very high dimensional
distributions. A typical example of a well-known type of PGM is the Kalman filter that can be used to obtain
probabilistic estimates of a hidden state of a process or system, given noisy measurements. PGMs can in principle be
used for any problem that involves uncertainty and is therefore applicable to many problems.</div> 

Veroku currently supports the following probability distributions:
* Categorical (sparse and dense implementations)
* Gaussian
* Gaussian mixture<sup>1</sup>
* Linear Gaussian<sup>2</sup>
* Non-linear Gaussian<sup>3</sup>

<sup>1</sup> This class still has some experimental functionality (specifically the Gaussian mixture division methods)
and is, therefore, still in the factors.experimental sub-package.  
<sup>2</sup> Using the Gaussian class - see the Kalman filter example notebook.<br/>
<sup>3</sup>This implementation is still experimental (see the factors.experimental sub-package).


<div style="text-align: justify">
These distributions can be used as factors to represent a factorised distribution. These factors can be used, together
with the <code>cluster_graph</code> module to automatically create valid cluster graphs. Inference can be performed in these graphs
using message passing algorithms. Currently only the LBU (Loopy Belief Update) message-passing algorithm is supported.
</div>

<br/>
Example notebooks:

* [Toy example](https://github.com/ejlouw/veroku/blob/master/examples/slip_on_grass.ipynb)
* [Kalman filter](https://github.com/ejlouw/veroku/blob/master/examples/Kalman_filter.ipynb)
* [Sudoku](https://github.com/ejlouw/veroku/blob/master/examples/sudoku.ipynb)



### On the Roadmap
The following distributions, models and features are on the roadmap to be added to veroku:
* Conditional Gaussian
* Dirichlet distribution
* Wishart distribution
* Normal-Wishart distribution
* Plate models
* Structure Learning
* Causal Inference

### Dependencies
For the python dependencies see the [requirements](https://github.com/ejlouw/veroku/blob/master/requirements.txt) file.
The following additional dependencies are also required for some functionality (these are not installed automatically
 with the `pip install`):

##### Graphviz
See https://graphviz.org/download/ for installation instructions. 

### Contributing
If you would like to contribute to veroku, please see the [contributing guide](https://github.com/ejlouw/veroku/blob/master/contributing.md).

### License
Veroku is released under a 3-Clause BSD license. You can view the license
[here](https://github.com/ejlouw/veroku/blob/master/LICENSE).




%package help
Summary:	Development documents and examples for veroku
Provides:	python3-veroku-doc
%description help
<div align="center">
  <img src="logo.svg">
</div>

[comment]: # (doc-start)

![Build Status](https://github.com/ejlouw/veroku/workflows/CI_PIPELINE/badge.svg?branch=master)

### Installation
For installing through pip:
```bash
pip install veroku
```

To clone this git repo:
```
git clone https://github.com/ejlouw/veroku.git 
cd veroku/
pip install -r requirements.txt
```
It is recommended to use a separate conda virtual environment when installing the dependencies, to avoid interfering
with existing packages. To get started with conda environments, see the
[installation guide](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html).
For more information on using conda environments see
[managing environments guide](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)

### Overview
<div style="text-align: justify">
Veroku is an open source library for building and performing inference with probabilistic graphical models (PGMs) in
python. PGMs provide a framework for performing efficient probabilistic inference with very high dimensional
distributions. A typical example of a well-known type of PGM is the Kalman filter that can be used to obtain
probabilistic estimates of a hidden state of a process or system, given noisy measurements. PGMs can in principle be
used for any problem that involves uncertainty and is therefore applicable to many problems.</div> 

Veroku currently supports the following probability distributions:
* Categorical (sparse and dense implementations)
* Gaussian
* Gaussian mixture<sup>1</sup>
* Linear Gaussian<sup>2</sup>
* Non-linear Gaussian<sup>3</sup>

<sup>1</sup> This class still has some experimental functionality (specifically the Gaussian mixture division methods)
and is, therefore, still in the factors.experimental sub-package.  
<sup>2</sup> Using the Gaussian class - see the Kalman filter example notebook.<br/>
<sup>3</sup>This implementation is still experimental (see the factors.experimental sub-package).


<div style="text-align: justify">
These distributions can be used as factors to represent a factorised distribution. These factors can be used, together
with the <code>cluster_graph</code> module to automatically create valid cluster graphs. Inference can be performed in these graphs
using message passing algorithms. Currently only the LBU (Loopy Belief Update) message-passing algorithm is supported.
</div>

<br/>
Example notebooks:

* [Toy example](https://github.com/ejlouw/veroku/blob/master/examples/slip_on_grass.ipynb)
* [Kalman filter](https://github.com/ejlouw/veroku/blob/master/examples/Kalman_filter.ipynb)
* [Sudoku](https://github.com/ejlouw/veroku/blob/master/examples/sudoku.ipynb)



### On the Roadmap
The following distributions, models and features are on the roadmap to be added to veroku:
* Conditional Gaussian
* Dirichlet distribution
* Wishart distribution
* Normal-Wishart distribution
* Plate models
* Structure Learning
* Causal Inference

### Dependencies
For the python dependencies see the [requirements](https://github.com/ejlouw/veroku/blob/master/requirements.txt) file.
The following additional dependencies are also required for some functionality (these are not installed automatically
 with the `pip install`):

##### Graphviz
See https://graphviz.org/download/ for installation instructions. 

### Contributing
If you would like to contribute to veroku, please see the [contributing guide](https://github.com/ejlouw/veroku/blob/master/contributing.md).

### License
Veroku is released under a 3-Clause BSD license. You can view the license
[here](https://github.com/ejlouw/veroku/blob/master/LICENSE).




%prep
%autosetup -n veroku-1.0.171

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-veroku -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.171-1
- Package Spec generated