1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
|
%global _empty_manifest_terminate_build 0
Name: python-verticapy
Version: 0.12.0
Release: 1
Summary: VerticaPy simplifies data exploration, data cleaning, and machine learning in Vertica.
License: Apache Software License
URL: https://github.com/vertica/VerticaPy
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/85/8c/bc3f23f356017e0d3a8e4a142c8559741ea9fc25d80bf3fafd245fc56afa/verticapy-0.12.0.tar.gz
BuildArch: noarch
Requires: python3-matplotlib
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-highcharts
Requires: python3-scipy
Requires: python3-tqdm
Requires: python3-vertica-python
Requires: python3-descartes
Requires: python3-geopandas
Requires: python3-graphviz
Requires: python3-shapely
%description
<p align="center">
<img src='https://raw.githubusercontent.com/vertica/VerticaPy/master/img/logo.png' width="180px">
</p>
:star: 2022-12-01: VerticaPy secures 100 stars.
:loudspeaker: 2020-06-27: Vertica-ML-Python has been renamed to VerticaPy.
:warning: VerticaPy 0.9.0 includes several significant changes and is therefore not backward compatible with older versions. For details, see the <a href='https://www.vertica.com/python/documentation_last/whats-new.php'>changelog</a>.
# VerticaPy
[](https://badge.fury.io/py/verticapy)
[](https://opensource.org/licenses/Apache-2.0)
[](https://www.python.org/downloads/)
[](https://codecov.io/gh/vertica/VerticaPy)
<p align="center">
<img src='https://raw.githubusercontent.com/vertica/VerticaPy/master/img/benefits.png' width="92%">
</p>
VerticaPy is a Python library with scikit-like functionality used to conduct data science projects on data stored in Vertica, taking advantage Vertica’s speed and built-in analytics and machine learning features. VerticaPy offers robust support for the entire data science life cycle, uses a 'pipeline' mechanism to sequentialize data transformation operations, and offers beautiful graphical options.
<br><br>
Nowadays, 'Big Data' is one of the main topics in the data science world, and data scientists are often at the center of any organization. The benefits of becoming more data-driven are undeniable and are often needed to survive in the industry.
<br><br>
Vertica was the first real analytic columnar database and is still the fastest in the market. However, SQL alone isn't flexible enough to meet the needs of data scientists.
<br><br>
Python has quickly become the most popular tool in this domain, owing much of its flexibility to its high-level of abstraction and impressively large and ever-growing set of libraries. Its accessibility has led to the development of popular and perfomant APIs, like pandas and scikit-learn, and a dedicated community of data scientists. Unfortunately, Python only works in-memory as a single-node process. This problem has led to the rise of distributed programming languages, but they too, are limited as in-memory processes and, as such, will never be able to process all of your data in this era, and moving data for processing is prohobitively expensive. On top of all of this, data scientists must also find convenient ways to deploy their data and models. The whole process is time consuming.
<br><br>
**VerticaPy aims to solve all of these problems**. The idea is simple: instead of moving data around for processing, VerticaPy brings the logic to the data.
<br><br>
3 years in the making, we're proud to bring you VerticaPy.
<br><br>
Main Advantages:
<ul>
<li> Easy Data Exploration.</li>
<li> Fast Data Preparation.</li>
<li> In-Database Machine Learning.</li>
<li> Easy Model Evaluation.</li>
<li> Easy Model Deployment.</li>
</ul>
<p align="center">
<img src='https://raw.githubusercontent.com/vertica/VerticaPy/master/img/architecture.png' width="92%">
</p>
## Installation
To install <b>VerticaPy</b> with pip:
```shell
# Latest release version
root@ubuntu:~$ pip3 install verticapy[all]
# Latest commit on master branch
root@ubuntu:~$ pip3 install git+https://github.com/vertica/verticapy.git@master
```
To install <b>VerticaPy</b> from source, run the following command from the root directory:
```shell
root@ubuntu:~$ python3 setup.py install
```
A detailed installation guide is available at: <br>
https://www.vertica.com/python/installation.php
## Documentation
Documentation is available at: <br>
https://www.vertica.com/python/documentation_last/
## Use-cases
Examples and case-studies: <br>
https://www.vertica.com/python/examples/
<p align="center">
<img src="https://raw.githubusercontent.com/vertica/VerticaPy/master/img/examples.gif" width="92%">
</p>
## SQL Magic
You can use VerticaPy to execute SQL queries directly from a Jupyter notebook. For details, see <a href='https://www.vertica.com/python/documentation_last/extensions/sql/'>SQL Magic</a>:
### Example
Load the SQL extension.
```python
%load_ext verticapy.sql
```
Execute your SQL queries.
```python
%%sql
SELECT version();
# Output
# Vertica Analytic Database v11.0.1-0
```
## Charts
A gallery of VerticaPy-generated charts is available at:<br>
https://www.vertica.com/python/gallery/
<p align="center">
<img src="https://raw.githubusercontent.com/vertica/VerticaPy/master/img/charts.gif" width="92%">
</p>
## Contributing
For a short guide on contribution standards, see <a href='https://github.com/vertica/VerticaPy/blob/master/CONTRIBUTING.md'>CONTRIBUTING.md</a>
## Connecting to the Database
VerticaPy is compatible with several clients. For details, see the <a href='https://www.vertica.com/python/connection.php'>connection page</a>.<br>
## Quickstart
The following example follows the <a href='https://www.vertica.com/python/quick-start.php'>VerticaPy quickstart guide</a>.
Install the library using with <b>pip</b>.
```shell
root@ubuntu:~$ pip3 install verticapy[all]
```
Create a new Vertica connection:
```python
import verticapy as vp
vp.new_connection({"host": "10.211.55.14",
"port": "5433",
"database": "testdb",
"password": "XxX",
"user": "dbadmin"},
name = "Vertica_New_Connection")
```
Use the newly created connection:
```python
vp.connect("Vertica_New_Connection")
```
Create a VerticaPy schema for native VerticaPy models (that is, models available in VerticaPy, but not Vertica itself):
```python
vp.create_verticapy_schema()
```
Create a vDataFrame of your relation:
```python
from verticapy import vDataFrame
vdf = vDataFrame("my_relation")
```
Load a sample dataset:
```python
from verticapy.datasets import load_titanic
vdf = load_titanic()
```
Examine your data:
```python
vdf.describe()
# Output
count mean std min
"pclass" 1234 2.28444084278768 0.842485636190292 1.0
"survived" 1234 0.364667747163696 0.481532018641288 0.0
"age" 997 30.1524573721163 14.4353046299159 0.33
"sibsp" 1234 0.504051863857374 1.04111727241629 0.0
"parch" 1234 0.378444084278768 0.868604707790393 0.0
"fare" 1233 33.963793673966 52.6460729831293 0.0
"body" 118 164.14406779661 96.5760207557808 1.0
approx_25% approx_50% approx_75% max
"pclass" 1.0 3.0 3.0 3.0
"survived" 0.0 0.0 1.0 1.0
"age" 21.0 28.0 39.0 80.0
"sibsp" 0.0 0.0 1.0 8.0
"parch" 0.0 0.0 0.0 9.0
"fare" 7.8958 14.4542 31.3875 512.3292
"body" 79.25 160.5 257.5 328.0
Rows: 1-7 | Columns: 9
```
Print the SQL query with <b>set_option</b>:
```python
set_option("sql_on", True)
vdf.describe()
# Output
## Compute the descriptive statistics of all the numerical columns ##
SELECT
SUMMARIZE_NUMCOL("pclass", "survived", "age", "sibsp", "parch", "fare", "body") OVER ()
FROM public.titanic
```
With VerticaPy, it is now possible to solve a ML problem with few lines of code.
```python
from verticapy.learn.model_selection import cross_validate
from verticapy.learn.ensemble import RandomForestClassifier
# Data Preparation
vdf["sex"].label_encode()["boat"].fillna(method = "0ifnull")["name"].str_extract(' ([A-Za-z]+)\.').eval("family_size", expr = "parch + sibsp + 1").drop(columns = ["cabin", "body", "ticket", "home.dest"])["fare"].fill_outliers().fillna()
# Model Evaluation
cross_validate(RandomForestClassifier("rf_titanic", cur, max_leaf_nodes = 100, n_estimators = 30),
vdf,
["age", "family_size", "sex", "pclass", "fare", "boat"],
"survived",
cutoff = 0.35)
# Output
auc prc_auc
1-fold 0.9877114427860691 0.9530465915039339
2-fold 0.9965555014605642 0.7676485351425721
3-fold 0.9927239216549301 0.6419135521132449
avg 0.992330288634 0.787536226253
std 0.00362128464093 0.12779562393
accuracy log_loss
1-fold 0.971291866028708 0.0502052541223871
2-fold 0.983253588516746 0.0298167751798457
3-fold 0.964824120603015 0.0392745694400433
avg 0.973123191716 0.0397655329141
std 0.0076344236729 0.00833079837099
precision recall
1-fold 0.96 0.96
2-fold 0.9556962025316456 1.0
3-fold 0.9647887323943662 0.9383561643835616
avg 0.960161644975 0.966118721461
std 0.00371376912311 0.025535200301
f1-score mcc
1-fold 0.9687259282082884 0.9376119402985075
2-fold 0.9867172675521821 0.9646971010878469
3-fold 0.9588020287309097 0.9240569687684576
avg 0.97141507483 0.942122003385
std 0.0115538960753 0.0168949813163
informedness markedness
1-fold 0.9376119402985075 0.9376119402985075
2-fold 0.9737827715355807 0.9556962025316456
3-fold 0.9185148945422918 0.9296324823943662
avg 0.943303202125 0.940980208408
std 0.0229190954261 0.0109037699717
csi
1-fold 0.9230769230769231
2-fold 0.9556962025316456
3-fold 0.9072847682119205
avg 0.928685964607
std 0.0201579224026
```
Enjoy!
%package -n python3-verticapy
Summary: VerticaPy simplifies data exploration, data cleaning, and machine learning in Vertica.
Provides: python-verticapy
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-verticapy
<p align="center">
<img src='https://raw.githubusercontent.com/vertica/VerticaPy/master/img/logo.png' width="180px">
</p>
:star: 2022-12-01: VerticaPy secures 100 stars.
:loudspeaker: 2020-06-27: Vertica-ML-Python has been renamed to VerticaPy.
:warning: VerticaPy 0.9.0 includes several significant changes and is therefore not backward compatible with older versions. For details, see the <a href='https://www.vertica.com/python/documentation_last/whats-new.php'>changelog</a>.
# VerticaPy
[](https://badge.fury.io/py/verticapy)
[](https://opensource.org/licenses/Apache-2.0)
[](https://www.python.org/downloads/)
[](https://codecov.io/gh/vertica/VerticaPy)
<p align="center">
<img src='https://raw.githubusercontent.com/vertica/VerticaPy/master/img/benefits.png' width="92%">
</p>
VerticaPy is a Python library with scikit-like functionality used to conduct data science projects on data stored in Vertica, taking advantage Vertica’s speed and built-in analytics and machine learning features. VerticaPy offers robust support for the entire data science life cycle, uses a 'pipeline' mechanism to sequentialize data transformation operations, and offers beautiful graphical options.
<br><br>
Nowadays, 'Big Data' is one of the main topics in the data science world, and data scientists are often at the center of any organization. The benefits of becoming more data-driven are undeniable and are often needed to survive in the industry.
<br><br>
Vertica was the first real analytic columnar database and is still the fastest in the market. However, SQL alone isn't flexible enough to meet the needs of data scientists.
<br><br>
Python has quickly become the most popular tool in this domain, owing much of its flexibility to its high-level of abstraction and impressively large and ever-growing set of libraries. Its accessibility has led to the development of popular and perfomant APIs, like pandas and scikit-learn, and a dedicated community of data scientists. Unfortunately, Python only works in-memory as a single-node process. This problem has led to the rise of distributed programming languages, but they too, are limited as in-memory processes and, as such, will never be able to process all of your data in this era, and moving data for processing is prohobitively expensive. On top of all of this, data scientists must also find convenient ways to deploy their data and models. The whole process is time consuming.
<br><br>
**VerticaPy aims to solve all of these problems**. The idea is simple: instead of moving data around for processing, VerticaPy brings the logic to the data.
<br><br>
3 years in the making, we're proud to bring you VerticaPy.
<br><br>
Main Advantages:
<ul>
<li> Easy Data Exploration.</li>
<li> Fast Data Preparation.</li>
<li> In-Database Machine Learning.</li>
<li> Easy Model Evaluation.</li>
<li> Easy Model Deployment.</li>
</ul>
<p align="center">
<img src='https://raw.githubusercontent.com/vertica/VerticaPy/master/img/architecture.png' width="92%">
</p>
## Installation
To install <b>VerticaPy</b> with pip:
```shell
# Latest release version
root@ubuntu:~$ pip3 install verticapy[all]
# Latest commit on master branch
root@ubuntu:~$ pip3 install git+https://github.com/vertica/verticapy.git@master
```
To install <b>VerticaPy</b> from source, run the following command from the root directory:
```shell
root@ubuntu:~$ python3 setup.py install
```
A detailed installation guide is available at: <br>
https://www.vertica.com/python/installation.php
## Documentation
Documentation is available at: <br>
https://www.vertica.com/python/documentation_last/
## Use-cases
Examples and case-studies: <br>
https://www.vertica.com/python/examples/
<p align="center">
<img src="https://raw.githubusercontent.com/vertica/VerticaPy/master/img/examples.gif" width="92%">
</p>
## SQL Magic
You can use VerticaPy to execute SQL queries directly from a Jupyter notebook. For details, see <a href='https://www.vertica.com/python/documentation_last/extensions/sql/'>SQL Magic</a>:
### Example
Load the SQL extension.
```python
%load_ext verticapy.sql
```
Execute your SQL queries.
```python
%%sql
SELECT version();
# Output
# Vertica Analytic Database v11.0.1-0
```
## Charts
A gallery of VerticaPy-generated charts is available at:<br>
https://www.vertica.com/python/gallery/
<p align="center">
<img src="https://raw.githubusercontent.com/vertica/VerticaPy/master/img/charts.gif" width="92%">
</p>
## Contributing
For a short guide on contribution standards, see <a href='https://github.com/vertica/VerticaPy/blob/master/CONTRIBUTING.md'>CONTRIBUTING.md</a>
## Connecting to the Database
VerticaPy is compatible with several clients. For details, see the <a href='https://www.vertica.com/python/connection.php'>connection page</a>.<br>
## Quickstart
The following example follows the <a href='https://www.vertica.com/python/quick-start.php'>VerticaPy quickstart guide</a>.
Install the library using with <b>pip</b>.
```shell
root@ubuntu:~$ pip3 install verticapy[all]
```
Create a new Vertica connection:
```python
import verticapy as vp
vp.new_connection({"host": "10.211.55.14",
"port": "5433",
"database": "testdb",
"password": "XxX",
"user": "dbadmin"},
name = "Vertica_New_Connection")
```
Use the newly created connection:
```python
vp.connect("Vertica_New_Connection")
```
Create a VerticaPy schema for native VerticaPy models (that is, models available in VerticaPy, but not Vertica itself):
```python
vp.create_verticapy_schema()
```
Create a vDataFrame of your relation:
```python
from verticapy import vDataFrame
vdf = vDataFrame("my_relation")
```
Load a sample dataset:
```python
from verticapy.datasets import load_titanic
vdf = load_titanic()
```
Examine your data:
```python
vdf.describe()
# Output
count mean std min
"pclass" 1234 2.28444084278768 0.842485636190292 1.0
"survived" 1234 0.364667747163696 0.481532018641288 0.0
"age" 997 30.1524573721163 14.4353046299159 0.33
"sibsp" 1234 0.504051863857374 1.04111727241629 0.0
"parch" 1234 0.378444084278768 0.868604707790393 0.0
"fare" 1233 33.963793673966 52.6460729831293 0.0
"body" 118 164.14406779661 96.5760207557808 1.0
approx_25% approx_50% approx_75% max
"pclass" 1.0 3.0 3.0 3.0
"survived" 0.0 0.0 1.0 1.0
"age" 21.0 28.0 39.0 80.0
"sibsp" 0.0 0.0 1.0 8.0
"parch" 0.0 0.0 0.0 9.0
"fare" 7.8958 14.4542 31.3875 512.3292
"body" 79.25 160.5 257.5 328.0
Rows: 1-7 | Columns: 9
```
Print the SQL query with <b>set_option</b>:
```python
set_option("sql_on", True)
vdf.describe()
# Output
## Compute the descriptive statistics of all the numerical columns ##
SELECT
SUMMARIZE_NUMCOL("pclass", "survived", "age", "sibsp", "parch", "fare", "body") OVER ()
FROM public.titanic
```
With VerticaPy, it is now possible to solve a ML problem with few lines of code.
```python
from verticapy.learn.model_selection import cross_validate
from verticapy.learn.ensemble import RandomForestClassifier
# Data Preparation
vdf["sex"].label_encode()["boat"].fillna(method = "0ifnull")["name"].str_extract(' ([A-Za-z]+)\.').eval("family_size", expr = "parch + sibsp + 1").drop(columns = ["cabin", "body", "ticket", "home.dest"])["fare"].fill_outliers().fillna()
# Model Evaluation
cross_validate(RandomForestClassifier("rf_titanic", cur, max_leaf_nodes = 100, n_estimators = 30),
vdf,
["age", "family_size", "sex", "pclass", "fare", "boat"],
"survived",
cutoff = 0.35)
# Output
auc prc_auc
1-fold 0.9877114427860691 0.9530465915039339
2-fold 0.9965555014605642 0.7676485351425721
3-fold 0.9927239216549301 0.6419135521132449
avg 0.992330288634 0.787536226253
std 0.00362128464093 0.12779562393
accuracy log_loss
1-fold 0.971291866028708 0.0502052541223871
2-fold 0.983253588516746 0.0298167751798457
3-fold 0.964824120603015 0.0392745694400433
avg 0.973123191716 0.0397655329141
std 0.0076344236729 0.00833079837099
precision recall
1-fold 0.96 0.96
2-fold 0.9556962025316456 1.0
3-fold 0.9647887323943662 0.9383561643835616
avg 0.960161644975 0.966118721461
std 0.00371376912311 0.025535200301
f1-score mcc
1-fold 0.9687259282082884 0.9376119402985075
2-fold 0.9867172675521821 0.9646971010878469
3-fold 0.9588020287309097 0.9240569687684576
avg 0.97141507483 0.942122003385
std 0.0115538960753 0.0168949813163
informedness markedness
1-fold 0.9376119402985075 0.9376119402985075
2-fold 0.9737827715355807 0.9556962025316456
3-fold 0.9185148945422918 0.9296324823943662
avg 0.943303202125 0.940980208408
std 0.0229190954261 0.0109037699717
csi
1-fold 0.9230769230769231
2-fold 0.9556962025316456
3-fold 0.9072847682119205
avg 0.928685964607
std 0.0201579224026
```
Enjoy!
%package help
Summary: Development documents and examples for verticapy
Provides: python3-verticapy-doc
%description help
<p align="center">
<img src='https://raw.githubusercontent.com/vertica/VerticaPy/master/img/logo.png' width="180px">
</p>
:star: 2022-12-01: VerticaPy secures 100 stars.
:loudspeaker: 2020-06-27: Vertica-ML-Python has been renamed to VerticaPy.
:warning: VerticaPy 0.9.0 includes several significant changes and is therefore not backward compatible with older versions. For details, see the <a href='https://www.vertica.com/python/documentation_last/whats-new.php'>changelog</a>.
# VerticaPy
[](https://badge.fury.io/py/verticapy)
[](https://opensource.org/licenses/Apache-2.0)
[](https://www.python.org/downloads/)
[](https://codecov.io/gh/vertica/VerticaPy)
<p align="center">
<img src='https://raw.githubusercontent.com/vertica/VerticaPy/master/img/benefits.png' width="92%">
</p>
VerticaPy is a Python library with scikit-like functionality used to conduct data science projects on data stored in Vertica, taking advantage Vertica’s speed and built-in analytics and machine learning features. VerticaPy offers robust support for the entire data science life cycle, uses a 'pipeline' mechanism to sequentialize data transformation operations, and offers beautiful graphical options.
<br><br>
Nowadays, 'Big Data' is one of the main topics in the data science world, and data scientists are often at the center of any organization. The benefits of becoming more data-driven are undeniable and are often needed to survive in the industry.
<br><br>
Vertica was the first real analytic columnar database and is still the fastest in the market. However, SQL alone isn't flexible enough to meet the needs of data scientists.
<br><br>
Python has quickly become the most popular tool in this domain, owing much of its flexibility to its high-level of abstraction and impressively large and ever-growing set of libraries. Its accessibility has led to the development of popular and perfomant APIs, like pandas and scikit-learn, and a dedicated community of data scientists. Unfortunately, Python only works in-memory as a single-node process. This problem has led to the rise of distributed programming languages, but they too, are limited as in-memory processes and, as such, will never be able to process all of your data in this era, and moving data for processing is prohobitively expensive. On top of all of this, data scientists must also find convenient ways to deploy their data and models. The whole process is time consuming.
<br><br>
**VerticaPy aims to solve all of these problems**. The idea is simple: instead of moving data around for processing, VerticaPy brings the logic to the data.
<br><br>
3 years in the making, we're proud to bring you VerticaPy.
<br><br>
Main Advantages:
<ul>
<li> Easy Data Exploration.</li>
<li> Fast Data Preparation.</li>
<li> In-Database Machine Learning.</li>
<li> Easy Model Evaluation.</li>
<li> Easy Model Deployment.</li>
</ul>
<p align="center">
<img src='https://raw.githubusercontent.com/vertica/VerticaPy/master/img/architecture.png' width="92%">
</p>
## Installation
To install <b>VerticaPy</b> with pip:
```shell
# Latest release version
root@ubuntu:~$ pip3 install verticapy[all]
# Latest commit on master branch
root@ubuntu:~$ pip3 install git+https://github.com/vertica/verticapy.git@master
```
To install <b>VerticaPy</b> from source, run the following command from the root directory:
```shell
root@ubuntu:~$ python3 setup.py install
```
A detailed installation guide is available at: <br>
https://www.vertica.com/python/installation.php
## Documentation
Documentation is available at: <br>
https://www.vertica.com/python/documentation_last/
## Use-cases
Examples and case-studies: <br>
https://www.vertica.com/python/examples/
<p align="center">
<img src="https://raw.githubusercontent.com/vertica/VerticaPy/master/img/examples.gif" width="92%">
</p>
## SQL Magic
You can use VerticaPy to execute SQL queries directly from a Jupyter notebook. For details, see <a href='https://www.vertica.com/python/documentation_last/extensions/sql/'>SQL Magic</a>:
### Example
Load the SQL extension.
```python
%load_ext verticapy.sql
```
Execute your SQL queries.
```python
%%sql
SELECT version();
# Output
# Vertica Analytic Database v11.0.1-0
```
## Charts
A gallery of VerticaPy-generated charts is available at:<br>
https://www.vertica.com/python/gallery/
<p align="center">
<img src="https://raw.githubusercontent.com/vertica/VerticaPy/master/img/charts.gif" width="92%">
</p>
## Contributing
For a short guide on contribution standards, see <a href='https://github.com/vertica/VerticaPy/blob/master/CONTRIBUTING.md'>CONTRIBUTING.md</a>
## Connecting to the Database
VerticaPy is compatible with several clients. For details, see the <a href='https://www.vertica.com/python/connection.php'>connection page</a>.<br>
## Quickstart
The following example follows the <a href='https://www.vertica.com/python/quick-start.php'>VerticaPy quickstart guide</a>.
Install the library using with <b>pip</b>.
```shell
root@ubuntu:~$ pip3 install verticapy[all]
```
Create a new Vertica connection:
```python
import verticapy as vp
vp.new_connection({"host": "10.211.55.14",
"port": "5433",
"database": "testdb",
"password": "XxX",
"user": "dbadmin"},
name = "Vertica_New_Connection")
```
Use the newly created connection:
```python
vp.connect("Vertica_New_Connection")
```
Create a VerticaPy schema for native VerticaPy models (that is, models available in VerticaPy, but not Vertica itself):
```python
vp.create_verticapy_schema()
```
Create a vDataFrame of your relation:
```python
from verticapy import vDataFrame
vdf = vDataFrame("my_relation")
```
Load a sample dataset:
```python
from verticapy.datasets import load_titanic
vdf = load_titanic()
```
Examine your data:
```python
vdf.describe()
# Output
count mean std min
"pclass" 1234 2.28444084278768 0.842485636190292 1.0
"survived" 1234 0.364667747163696 0.481532018641288 0.0
"age" 997 30.1524573721163 14.4353046299159 0.33
"sibsp" 1234 0.504051863857374 1.04111727241629 0.0
"parch" 1234 0.378444084278768 0.868604707790393 0.0
"fare" 1233 33.963793673966 52.6460729831293 0.0
"body" 118 164.14406779661 96.5760207557808 1.0
approx_25% approx_50% approx_75% max
"pclass" 1.0 3.0 3.0 3.0
"survived" 0.0 0.0 1.0 1.0
"age" 21.0 28.0 39.0 80.0
"sibsp" 0.0 0.0 1.0 8.0
"parch" 0.0 0.0 0.0 9.0
"fare" 7.8958 14.4542 31.3875 512.3292
"body" 79.25 160.5 257.5 328.0
Rows: 1-7 | Columns: 9
```
Print the SQL query with <b>set_option</b>:
```python
set_option("sql_on", True)
vdf.describe()
# Output
## Compute the descriptive statistics of all the numerical columns ##
SELECT
SUMMARIZE_NUMCOL("pclass", "survived", "age", "sibsp", "parch", "fare", "body") OVER ()
FROM public.titanic
```
With VerticaPy, it is now possible to solve a ML problem with few lines of code.
```python
from verticapy.learn.model_selection import cross_validate
from verticapy.learn.ensemble import RandomForestClassifier
# Data Preparation
vdf["sex"].label_encode()["boat"].fillna(method = "0ifnull")["name"].str_extract(' ([A-Za-z]+)\.').eval("family_size", expr = "parch + sibsp + 1").drop(columns = ["cabin", "body", "ticket", "home.dest"])["fare"].fill_outliers().fillna()
# Model Evaluation
cross_validate(RandomForestClassifier("rf_titanic", cur, max_leaf_nodes = 100, n_estimators = 30),
vdf,
["age", "family_size", "sex", "pclass", "fare", "boat"],
"survived",
cutoff = 0.35)
# Output
auc prc_auc
1-fold 0.9877114427860691 0.9530465915039339
2-fold 0.9965555014605642 0.7676485351425721
3-fold 0.9927239216549301 0.6419135521132449
avg 0.992330288634 0.787536226253
std 0.00362128464093 0.12779562393
accuracy log_loss
1-fold 0.971291866028708 0.0502052541223871
2-fold 0.983253588516746 0.0298167751798457
3-fold 0.964824120603015 0.0392745694400433
avg 0.973123191716 0.0397655329141
std 0.0076344236729 0.00833079837099
precision recall
1-fold 0.96 0.96
2-fold 0.9556962025316456 1.0
3-fold 0.9647887323943662 0.9383561643835616
avg 0.960161644975 0.966118721461
std 0.00371376912311 0.025535200301
f1-score mcc
1-fold 0.9687259282082884 0.9376119402985075
2-fold 0.9867172675521821 0.9646971010878469
3-fold 0.9588020287309097 0.9240569687684576
avg 0.97141507483 0.942122003385
std 0.0115538960753 0.0168949813163
informedness markedness
1-fold 0.9376119402985075 0.9376119402985075
2-fold 0.9737827715355807 0.9556962025316456
3-fold 0.9185148945422918 0.9296324823943662
avg 0.943303202125 0.940980208408
std 0.0229190954261 0.0109037699717
csi
1-fold 0.9230769230769231
2-fold 0.9556962025316456
3-fold 0.9072847682119205
avg 0.928685964607
std 0.0201579224026
```
Enjoy!
%prep
%autosetup -n verticapy-0.12.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-verticapy -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.12.0-1
- Package Spec generated
|