1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
%global _empty_manifest_terminate_build 0
Name: python-vetting
Version: 0.3
Release: 1
Summary: Simple, stand-alone vetting tools for transiting signals in Keper, K2 and TESS data
License: MIT
URL: https://github.com/SSDataLab/vetting
Source0: https://mirrors.aliyun.com/pypi/web/packages/7f/2e/5a2f44fd291eed095ff4393f9e9effdd588c87495ee05311f095facfbd07/vetting-0.3.tar.gz
BuildArch: noarch
Requires: python3-lightkurve
Requires: python3-corner
%description
# vetting
**`vetting` contains simple, stand-alone Python tools for vetting transiting signals in NASA's Kepler, K2 and TESS data. `vetting` requires an installation of Python 3.8 or higher.**
[](https://pypi.org/project/vetting/)

## Installation
You can install `vetting` by executing the following in a terminal
```
pip install vetting
```
### Centroid testing
An example of a simple test is shown below.

Here a significant offset is detected in the centroid of false positive KOI-608 during transit. The p-value for the points during transit being drawn from the same distribution as the points out of transit is low, (there is a less than 1% chance these are drawn from the same distribution). To recreate this example you can use the following script:
```python
import lightkurve as lk
from vetting import centroid_test
tpf = lk.search_targetpixelfile('KOI-608', mission='Kepler', quarter=10).download()
period, t0, dur = 25.3368592, 192.91552, 8.85/24
r = centroid_test(tpf, period, t0, dur, aperture_mask='pipeline', plot=False)
```
%package -n python3-vetting
Summary: Simple, stand-alone vetting tools for transiting signals in Keper, K2 and TESS data
Provides: python-vetting
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-vetting
# vetting
**`vetting` contains simple, stand-alone Python tools for vetting transiting signals in NASA's Kepler, K2 and TESS data. `vetting` requires an installation of Python 3.8 or higher.**
[](https://pypi.org/project/vetting/)

## Installation
You can install `vetting` by executing the following in a terminal
```
pip install vetting
```
### Centroid testing
An example of a simple test is shown below.

Here a significant offset is detected in the centroid of false positive KOI-608 during transit. The p-value for the points during transit being drawn from the same distribution as the points out of transit is low, (there is a less than 1% chance these are drawn from the same distribution). To recreate this example you can use the following script:
```python
import lightkurve as lk
from vetting import centroid_test
tpf = lk.search_targetpixelfile('KOI-608', mission='Kepler', quarter=10).download()
period, t0, dur = 25.3368592, 192.91552, 8.85/24
r = centroid_test(tpf, period, t0, dur, aperture_mask='pipeline', plot=False)
```
%package help
Summary: Development documents and examples for vetting
Provides: python3-vetting-doc
%description help
# vetting
**`vetting` contains simple, stand-alone Python tools for vetting transiting signals in NASA's Kepler, K2 and TESS data. `vetting` requires an installation of Python 3.8 or higher.**
[](https://pypi.org/project/vetting/)

## Installation
You can install `vetting` by executing the following in a terminal
```
pip install vetting
```
### Centroid testing
An example of a simple test is shown below.

Here a significant offset is detected in the centroid of false positive KOI-608 during transit. The p-value for the points during transit being drawn from the same distribution as the points out of transit is low, (there is a less than 1% chance these are drawn from the same distribution). To recreate this example you can use the following script:
```python
import lightkurve as lk
from vetting import centroid_test
tpf = lk.search_targetpixelfile('KOI-608', mission='Kepler', quarter=10).download()
period, t0, dur = 25.3368592, 192.91552, 8.85/24
r = centroid_test(tpf, period, t0, dur, aperture_mask='pipeline', plot=False)
```
%prep
%autosetup -n vetting-0.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-vetting -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3-1
- Package Spec generated
|