1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
%global _empty_manifest_terminate_build 0
Name: python-weightedstats
Version: 0.4.1
Release: 1
Summary: Mean, weighted mean, median, weighted median
License: MIT
URL: https://github.com/tinybike/weightedstats
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/da/a5/f5c0e601a610e4618316be3155febbbec98994788fcc0e9d8080369266ec/weightedstats-0.4.1.tar.gz
BuildArch: noarch
%description
Python functions to calculate the mean, weighted mean, median, and weighted median.
Installation
^^^^^^^^^^^^
The easiest way to install WeightedStats is to use pip::
$ pip install weightedstats
Usage
^^^^^
WeightedStats includes four functions (mean, weighted_mean, median, weighted_median) which accept lists as arguments, and two functions (numpy_weighted_mean, numpy weighted_median) which accept either lists or numpy arrays.
Example:
import weightedstats as ws
my_data = [1, 2, 3, 4, 5]
my_weights = [10, 1, 1, 1, 9]
# Ordinary (unweighted) mean and median
ws.mean(my_data) # equivalent to ws.weighted_mean(my_data)
ws.median(my_data) # equivalent to ws.weighted_median(my_data)
# Weighted mean and median
ws.weighted_mean(my_data, weights=my_weights)
ws.weighted_median(my_data, weights=my_weights)
# Special weighted mean and median functions for use with numpy arrays
ws.numpy_weighted_mean(my_data, weights=my_weights)
ws.numpy_weighted_median(my_data, weights=my_weights)
Tests
^^^^^
Unit tests are in the test/ directory.
%package -n python3-weightedstats
Summary: Mean, weighted mean, median, weighted median
Provides: python-weightedstats
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-weightedstats
Python functions to calculate the mean, weighted mean, median, and weighted median.
Installation
^^^^^^^^^^^^
The easiest way to install WeightedStats is to use pip::
$ pip install weightedstats
Usage
^^^^^
WeightedStats includes four functions (mean, weighted_mean, median, weighted_median) which accept lists as arguments, and two functions (numpy_weighted_mean, numpy weighted_median) which accept either lists or numpy arrays.
Example:
import weightedstats as ws
my_data = [1, 2, 3, 4, 5]
my_weights = [10, 1, 1, 1, 9]
# Ordinary (unweighted) mean and median
ws.mean(my_data) # equivalent to ws.weighted_mean(my_data)
ws.median(my_data) # equivalent to ws.weighted_median(my_data)
# Weighted mean and median
ws.weighted_mean(my_data, weights=my_weights)
ws.weighted_median(my_data, weights=my_weights)
# Special weighted mean and median functions for use with numpy arrays
ws.numpy_weighted_mean(my_data, weights=my_weights)
ws.numpy_weighted_median(my_data, weights=my_weights)
Tests
^^^^^
Unit tests are in the test/ directory.
%package help
Summary: Development documents and examples for weightedstats
Provides: python3-weightedstats-doc
%description help
Python functions to calculate the mean, weighted mean, median, and weighted median.
Installation
^^^^^^^^^^^^
The easiest way to install WeightedStats is to use pip::
$ pip install weightedstats
Usage
^^^^^
WeightedStats includes four functions (mean, weighted_mean, median, weighted_median) which accept lists as arguments, and two functions (numpy_weighted_mean, numpy weighted_median) which accept either lists or numpy arrays.
Example:
import weightedstats as ws
my_data = [1, 2, 3, 4, 5]
my_weights = [10, 1, 1, 1, 9]
# Ordinary (unweighted) mean and median
ws.mean(my_data) # equivalent to ws.weighted_mean(my_data)
ws.median(my_data) # equivalent to ws.weighted_median(my_data)
# Weighted mean and median
ws.weighted_mean(my_data, weights=my_weights)
ws.weighted_median(my_data, weights=my_weights)
# Special weighted mean and median functions for use with numpy arrays
ws.numpy_weighted_mean(my_data, weights=my_weights)
ws.numpy_weighted_median(my_data, weights=my_weights)
Tests
^^^^^
Unit tests are in the test/ directory.
%prep
%autosetup -n weightedstats-0.4.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-weightedstats -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.1-1
- Package Spec generated
|