summaryrefslogtreecommitdiff
path: root/python-whichlang.spec
blob: 8993acdf9af3843955ac685fbcba42bc1dca0c9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
%global _empty_manifest_terminate_build 0
Name:		python-whichlang
Version:	0.0.4
Release:	1
Summary:	Does language identification for Indian languages
License:	MIT License
URL:		https://github.com/xtraspeed/whichlang
Source0:	https://mirrors.aliyun.com/pypi/web/packages/63/d5/dbd25ab5fdf4a0eaea0601158872129d53fd28e117ffd7a9b2b7f0782d84/whichlang-0.0.4.tar.gz
BuildArch:	noarch


%description

# whichlang



whichlang is a Python library for identifying the language of the given text



## Installation



Use the package manager [pip](https://pip.pypa.io/en/stable/) to install whichlang.



```bash

pip install whichlang

```



## Usage



```python

from whichlang import whichlang as wl



f = open('sample-test-files\\sample-hindi.txt','r')

data = f.read()



# returns tuple of top 3 probable languages, first one being most probable language

print (wl.which_lang(data))

>>> ('Hindi', 'Marathi', 'Punjabi') #Hindi is most probable. 

```



```

# For training a language model

# assamese.txt is train data

# Assamese is the language model created

python train_lang_models.py -f train-data\as\assamese.txt -l Assamese

```

## Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.



## License

[MIT](https://choosealicense.com/licenses/mit/)



## Available Languages

Hindi, Telugu, Tamil, Kannada, Malayalam, Punjabi, Marathi, Gujarati, Oriya, Assamese.



## Acknowledgements

1. We would like to thank the [Leipzig Corpora collection](https://corpora.uni-leipzig.de/en) where we collected data for training models. 

    Dirk Goldhahn, Thomas Eckart and Uwe Quasthoff (2012): Building Large Monolingual Dictionaries at the Leipzig Corpora Collection: From 100 to 200 Languages. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), 2012

2. whichlang is based on N-gram based Text categorization: Cavnar, William B., and John M. Trenkle. "N-gram-based text categorization." Proceedings of   SDAIR-94, 3rd annual symposium on document analysis and information retrieval. Vol. 161175. 1994.

 The same approach was used in library [langdetect]((https://github.com/fedelopez77/langdetect)). We found this approach quite effective and wanted to explore for Indian languages. In whichlang, we train, optimize and make  models readily available for Indian languages since these languages have been less explored.

















%package -n python3-whichlang
Summary:	Does language identification for Indian languages
Provides:	python-whichlang
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-whichlang

# whichlang



whichlang is a Python library for identifying the language of the given text



## Installation



Use the package manager [pip](https://pip.pypa.io/en/stable/) to install whichlang.



```bash

pip install whichlang

```



## Usage



```python

from whichlang import whichlang as wl



f = open('sample-test-files\\sample-hindi.txt','r')

data = f.read()



# returns tuple of top 3 probable languages, first one being most probable language

print (wl.which_lang(data))

>>> ('Hindi', 'Marathi', 'Punjabi') #Hindi is most probable. 

```



```

# For training a language model

# assamese.txt is train data

# Assamese is the language model created

python train_lang_models.py -f train-data\as\assamese.txt -l Assamese

```

## Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.



## License

[MIT](https://choosealicense.com/licenses/mit/)



## Available Languages

Hindi, Telugu, Tamil, Kannada, Malayalam, Punjabi, Marathi, Gujarati, Oriya, Assamese.



## Acknowledgements

1. We would like to thank the [Leipzig Corpora collection](https://corpora.uni-leipzig.de/en) where we collected data for training models. 

    Dirk Goldhahn, Thomas Eckart and Uwe Quasthoff (2012): Building Large Monolingual Dictionaries at the Leipzig Corpora Collection: From 100 to 200 Languages. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), 2012

2. whichlang is based on N-gram based Text categorization: Cavnar, William B., and John M. Trenkle. "N-gram-based text categorization." Proceedings of   SDAIR-94, 3rd annual symposium on document analysis and information retrieval. Vol. 161175. 1994.

 The same approach was used in library [langdetect]((https://github.com/fedelopez77/langdetect)). We found this approach quite effective and wanted to explore for Indian languages. In whichlang, we train, optimize and make  models readily available for Indian languages since these languages have been less explored.

















%package help
Summary:	Development documents and examples for whichlang
Provides:	python3-whichlang-doc
%description help

# whichlang



whichlang is a Python library for identifying the language of the given text



## Installation



Use the package manager [pip](https://pip.pypa.io/en/stable/) to install whichlang.



```bash

pip install whichlang

```



## Usage



```python

from whichlang import whichlang as wl



f = open('sample-test-files\\sample-hindi.txt','r')

data = f.read()



# returns tuple of top 3 probable languages, first one being most probable language

print (wl.which_lang(data))

>>> ('Hindi', 'Marathi', 'Punjabi') #Hindi is most probable. 

```



```

# For training a language model

# assamese.txt is train data

# Assamese is the language model created

python train_lang_models.py -f train-data\as\assamese.txt -l Assamese

```

## Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.



## License

[MIT](https://choosealicense.com/licenses/mit/)



## Available Languages

Hindi, Telugu, Tamil, Kannada, Malayalam, Punjabi, Marathi, Gujarati, Oriya, Assamese.



## Acknowledgements

1. We would like to thank the [Leipzig Corpora collection](https://corpora.uni-leipzig.de/en) where we collected data for training models. 

    Dirk Goldhahn, Thomas Eckart and Uwe Quasthoff (2012): Building Large Monolingual Dictionaries at the Leipzig Corpora Collection: From 100 to 200 Languages. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), 2012

2. whichlang is based on N-gram based Text categorization: Cavnar, William B., and John M. Trenkle. "N-gram-based text categorization." Proceedings of   SDAIR-94, 3rd annual symposium on document analysis and information retrieval. Vol. 161175. 1994.

 The same approach was used in library [langdetect]((https://github.com/fedelopez77/langdetect)). We found this approach quite effective and wanted to explore for Indian languages. In whichlang, we train, optimize and make  models readily available for Indian languages since these languages have been less explored.

















%prep
%autosetup -n whichlang-0.0.4

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-whichlang -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.4-1
- Package Spec generated