diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-05 08:37:22 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-05 08:37:22 +0000 |
| commit | 601ec922cf6bc6b1c9833b5bb4428f48802de42e (patch) | |
| tree | 848533c4ae99eeb790beaaef7aa5d4ba882574ac | |
| parent | f97940852477c6cdea7c1a4583cc7d8c8969d9b6 (diff) | |
automatic import of python-wikipedia2vecopeneuler20.03
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-wikipedia2vec.spec | 312 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 314 insertions, 0 deletions
@@ -0,0 +1 @@ +/wikipedia2vec-1.0.5.tar.gz diff --git a/python-wikipedia2vec.spec b/python-wikipedia2vec.spec new file mode 100644 index 0000000..be9f535 --- /dev/null +++ b/python-wikipedia2vec.spec @@ -0,0 +1,312 @@ +%global _empty_manifest_terminate_build 0 +Name: python-wikipedia2vec +Version: 1.0.5 +Release: 1 +Summary: A tool for learning vector representations of words and entities from Wikipedia +License: Apache Software License +URL: http://wikipedia2vec.github.io/ +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/89/83/15ab878fe5a93590b80bac8c3a8b0ad5f5dec5d0ea1071f9a17dbce5c33b/wikipedia2vec-1.0.5.tar.gz +BuildArch: noarch + + +%description +[](http://badge.fury.io/py/wikipedia2vec) +[](https://circleci.com/gh/wikipedia2vec/wikipedia2vec) +Wikipedia2Vec is a tool used for obtaining embeddings (or vector representations) of words and entities (i.e., concepts that have corresponding pages in Wikipedia) from Wikipedia. +It is developed and maintained by [Studio Ousia](http://www.ousia.jp). +This tool enables you to learn embeddings of words and entities simultaneously, and places similar words and entities close to one another in a continuous vector space. +Embeddings can be easily trained by a single command with a publicly available Wikipedia dump as input. +This tool implements the [conventional skip-gram model](https://en.wikipedia.org/wiki/Word2vec) to learn the embeddings of words, and its extension proposed in [Yamada et al. (2016)](https://arxiv.org/abs/1601.01343) to learn the embeddings of entities. +An empirical comparison between Wikipedia2Vec and existing embedding tools (i.e., FastText, Gensim, RDF2Vec, and Wiki2vec) is available [here](https://arxiv.org/abs/1812.06280). +Documentation are available online at [http://wikipedia2vec.github.io/](http://wikipedia2vec.github.io/). +## Basic Usage +Wikipedia2Vec can be installed via PyPI: +```bash +% pip install wikipedia2vec +``` +With this tool, embeddings can be learned by running a *train* command with a Wikipedia dump as input. +For example, the following commands download the latest English Wikipedia dump and learn embeddings from this dump: +```bash +% wget https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2 +% wikipedia2vec train enwiki-latest-pages-articles.xml.bz2 MODEL_FILE +``` +Then, the learned embeddings are written to *MODEL\_FILE*. +Note that this command can take many optional parameters. +Please refer to [our documentation](https://wikipedia2vec.github.io/wikipedia2vec/commands/) for further details. +## Pretrained Embeddings +Pretrained embeddings for 12 languages (i.e., English, Arabic, Chinese, Dutch, French, German, Italian, Japanese, Polish, Portuguese, Russian, and Spanish) can be downloaded from [this page](https://wikipedia2vec.github.io/wikipedia2vec/pretrained/). +## Use Cases +Wikipedia2Vec has been applied to the following tasks: +* Entity linking: [Yamada et al., 2016](https://arxiv.org/abs/1601.01343), [Eshel et al., 2017](https://arxiv.org/abs/1706.09147), [Chen et al., 2019](https://arxiv.org/abs/1911.03834), [Poerner et al., 2020](https://arxiv.org/abs/1911.03681), [van Hulst et al., 2020](https://arxiv.org/abs/2006.01969). +* Named entity recognition: [Sato et al., 2017](http://www.aclweb.org/anthology/I17-2017), [Lara-Clares and Garcia-Serrano, 2019](http://ceur-ws.org/Vol-2421/eHealth-KD_paper_6.pdf). +* Question answering: [Yamada et al., 2017](https://arxiv.org/abs/1803.08652), [Poerner et al., 2020](https://arxiv.org/abs/1911.03681). +* Entity typing: [Yamada et al., 2018](https://arxiv.org/abs/1806.02960). +* Text classification: [Yamada et al., 2018](https://arxiv.org/abs/1806.02960), [Yamada and Shindo, 2019](https://arxiv.org/abs/1909.01259), [Alam et al., 2020](https://link.springer.com/chapter/10.1007/978-3-030-61244-3_9). +* Relation classification: [Poerner et al., 2020](https://arxiv.org/abs/1911.03681). +* Paraphrase detection: [Duong et al., 2018](https://ieeexplore.ieee.org/abstract/document/8606845). +* Knowledge graph completion: [Shah et al., 2019](https://aaai.org/ojs/index.php/AAAI/article/view/4162), [Shah et al., 2020](https://www.aclweb.org/anthology/2020.textgraphs-1.9/). +* Fake news detection: [Singh et al., 2019](https://arxiv.org/abs/1906.11126), [Ghosal et al., 2020](https://arxiv.org/abs/2010.10836). +* Plot analysis of movies: [Papalampidi et al., 2019](https://arxiv.org/abs/1908.10328). +* Novel entity discovery: [Zhang et al., 2020](https://arxiv.org/abs/2002.00206). +* Entity retrieval: [Gerritse et al., 2020](https://link.springer.com/chapter/10.1007%2F978-3-030-45439-5_7). +* Deepfake detection: [Zhong et al., 2020](https://arxiv.org/abs/2010.07475). +* Conversational information seeking: [Rodriguez et al., 2020](https://arxiv.org/abs/2005.00172). +* Query expansion: [Rosin et al., 2020](https://arxiv.org/abs/2012.12065). +## References +If you use Wikipedia2Vec in a scientific publication, please cite the following paper: +Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu Takefuji, Yuji Matsumoto, [Wikipedia2Vec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from Wikipedia](https://arxiv.org/abs/1812.06280). +``` +@inproceedings{yamada2020wikipedia2vec, + title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia", + author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji}, + booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations}, + year = {2020}, + publisher = {Association for Computational Linguistics}, + pages = {23--30} +} +``` +The embedding model was originally proposed in the following paper: +Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu Takefuji, [Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation](https://arxiv.org/abs/1601.01343). +``` +@inproceedings{yamada2016joint, + title={Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation}, + author={Yamada, Ikuya and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu}, + booktitle={Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning}, + year={2016}, + publisher={Association for Computational Linguistics}, + pages={250--259} +} +``` +The text classification model implemented in [this example](https://github.com/wikipedia2vec/wikipedia2vec/tree/master/examples/text_classification) was proposed in the following paper: +Ikuya Yamada, Hiroyuki Shindo, [Neural Attentive Bag-of-Entities Model for Text Classification](https://arxiv.org/abs/1909.01259). +``` +@article{yamada2019neural, + title={Neural Attentive Bag-of-Entities Model for Text Classification}, + author={Yamada, Ikuya and Shindo, Hiroyuki}, + booktitle={Proceedings of The 23th SIGNLL Conference on Computational Natural Language Learning}, + year={2019}, + publisher={Association for Computational Linguistics}, + pages = {563--573} +} +``` +## License +[Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0) + +%package -n python3-wikipedia2vec +Summary: A tool for learning vector representations of words and entities from Wikipedia +Provides: python-wikipedia2vec +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-wikipedia2vec +[](http://badge.fury.io/py/wikipedia2vec) +[](https://circleci.com/gh/wikipedia2vec/wikipedia2vec) +Wikipedia2Vec is a tool used for obtaining embeddings (or vector representations) of words and entities (i.e., concepts that have corresponding pages in Wikipedia) from Wikipedia. +It is developed and maintained by [Studio Ousia](http://www.ousia.jp). +This tool enables you to learn embeddings of words and entities simultaneously, and places similar words and entities close to one another in a continuous vector space. +Embeddings can be easily trained by a single command with a publicly available Wikipedia dump as input. +This tool implements the [conventional skip-gram model](https://en.wikipedia.org/wiki/Word2vec) to learn the embeddings of words, and its extension proposed in [Yamada et al. (2016)](https://arxiv.org/abs/1601.01343) to learn the embeddings of entities. +An empirical comparison between Wikipedia2Vec and existing embedding tools (i.e., FastText, Gensim, RDF2Vec, and Wiki2vec) is available [here](https://arxiv.org/abs/1812.06280). +Documentation are available online at [http://wikipedia2vec.github.io/](http://wikipedia2vec.github.io/). +## Basic Usage +Wikipedia2Vec can be installed via PyPI: +```bash +% pip install wikipedia2vec +``` +With this tool, embeddings can be learned by running a *train* command with a Wikipedia dump as input. +For example, the following commands download the latest English Wikipedia dump and learn embeddings from this dump: +```bash +% wget https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2 +% wikipedia2vec train enwiki-latest-pages-articles.xml.bz2 MODEL_FILE +``` +Then, the learned embeddings are written to *MODEL\_FILE*. +Note that this command can take many optional parameters. +Please refer to [our documentation](https://wikipedia2vec.github.io/wikipedia2vec/commands/) for further details. +## Pretrained Embeddings +Pretrained embeddings for 12 languages (i.e., English, Arabic, Chinese, Dutch, French, German, Italian, Japanese, Polish, Portuguese, Russian, and Spanish) can be downloaded from [this page](https://wikipedia2vec.github.io/wikipedia2vec/pretrained/). +## Use Cases +Wikipedia2Vec has been applied to the following tasks: +* Entity linking: [Yamada et al., 2016](https://arxiv.org/abs/1601.01343), [Eshel et al., 2017](https://arxiv.org/abs/1706.09147), [Chen et al., 2019](https://arxiv.org/abs/1911.03834), [Poerner et al., 2020](https://arxiv.org/abs/1911.03681), [van Hulst et al., 2020](https://arxiv.org/abs/2006.01969). +* Named entity recognition: [Sato et al., 2017](http://www.aclweb.org/anthology/I17-2017), [Lara-Clares and Garcia-Serrano, 2019](http://ceur-ws.org/Vol-2421/eHealth-KD_paper_6.pdf). +* Question answering: [Yamada et al., 2017](https://arxiv.org/abs/1803.08652), [Poerner et al., 2020](https://arxiv.org/abs/1911.03681). +* Entity typing: [Yamada et al., 2018](https://arxiv.org/abs/1806.02960). +* Text classification: [Yamada et al., 2018](https://arxiv.org/abs/1806.02960), [Yamada and Shindo, 2019](https://arxiv.org/abs/1909.01259), [Alam et al., 2020](https://link.springer.com/chapter/10.1007/978-3-030-61244-3_9). +* Relation classification: [Poerner et al., 2020](https://arxiv.org/abs/1911.03681). +* Paraphrase detection: [Duong et al., 2018](https://ieeexplore.ieee.org/abstract/document/8606845). +* Knowledge graph completion: [Shah et al., 2019](https://aaai.org/ojs/index.php/AAAI/article/view/4162), [Shah et al., 2020](https://www.aclweb.org/anthology/2020.textgraphs-1.9/). +* Fake news detection: [Singh et al., 2019](https://arxiv.org/abs/1906.11126), [Ghosal et al., 2020](https://arxiv.org/abs/2010.10836). +* Plot analysis of movies: [Papalampidi et al., 2019](https://arxiv.org/abs/1908.10328). +* Novel entity discovery: [Zhang et al., 2020](https://arxiv.org/abs/2002.00206). +* Entity retrieval: [Gerritse et al., 2020](https://link.springer.com/chapter/10.1007%2F978-3-030-45439-5_7). +* Deepfake detection: [Zhong et al., 2020](https://arxiv.org/abs/2010.07475). +* Conversational information seeking: [Rodriguez et al., 2020](https://arxiv.org/abs/2005.00172). +* Query expansion: [Rosin et al., 2020](https://arxiv.org/abs/2012.12065). +## References +If you use Wikipedia2Vec in a scientific publication, please cite the following paper: +Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu Takefuji, Yuji Matsumoto, [Wikipedia2Vec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from Wikipedia](https://arxiv.org/abs/1812.06280). +``` +@inproceedings{yamada2020wikipedia2vec, + title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia", + author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji}, + booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations}, + year = {2020}, + publisher = {Association for Computational Linguistics}, + pages = {23--30} +} +``` +The embedding model was originally proposed in the following paper: +Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu Takefuji, [Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation](https://arxiv.org/abs/1601.01343). +``` +@inproceedings{yamada2016joint, + title={Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation}, + author={Yamada, Ikuya and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu}, + booktitle={Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning}, + year={2016}, + publisher={Association for Computational Linguistics}, + pages={250--259} +} +``` +The text classification model implemented in [this example](https://github.com/wikipedia2vec/wikipedia2vec/tree/master/examples/text_classification) was proposed in the following paper: +Ikuya Yamada, Hiroyuki Shindo, [Neural Attentive Bag-of-Entities Model for Text Classification](https://arxiv.org/abs/1909.01259). +``` +@article{yamada2019neural, + title={Neural Attentive Bag-of-Entities Model for Text Classification}, + author={Yamada, Ikuya and Shindo, Hiroyuki}, + booktitle={Proceedings of The 23th SIGNLL Conference on Computational Natural Language Learning}, + year={2019}, + publisher={Association for Computational Linguistics}, + pages = {563--573} +} +``` +## License +[Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0) + +%package help +Summary: Development documents and examples for wikipedia2vec +Provides: python3-wikipedia2vec-doc +%description help +[](http://badge.fury.io/py/wikipedia2vec) +[](https://circleci.com/gh/wikipedia2vec/wikipedia2vec) +Wikipedia2Vec is a tool used for obtaining embeddings (or vector representations) of words and entities (i.e., concepts that have corresponding pages in Wikipedia) from Wikipedia. +It is developed and maintained by [Studio Ousia](http://www.ousia.jp). +This tool enables you to learn embeddings of words and entities simultaneously, and places similar words and entities close to one another in a continuous vector space. +Embeddings can be easily trained by a single command with a publicly available Wikipedia dump as input. +This tool implements the [conventional skip-gram model](https://en.wikipedia.org/wiki/Word2vec) to learn the embeddings of words, and its extension proposed in [Yamada et al. (2016)](https://arxiv.org/abs/1601.01343) to learn the embeddings of entities. +An empirical comparison between Wikipedia2Vec and existing embedding tools (i.e., FastText, Gensim, RDF2Vec, and Wiki2vec) is available [here](https://arxiv.org/abs/1812.06280). +Documentation are available online at [http://wikipedia2vec.github.io/](http://wikipedia2vec.github.io/). +## Basic Usage +Wikipedia2Vec can be installed via PyPI: +```bash +% pip install wikipedia2vec +``` +With this tool, embeddings can be learned by running a *train* command with a Wikipedia dump as input. +For example, the following commands download the latest English Wikipedia dump and learn embeddings from this dump: +```bash +% wget https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2 +% wikipedia2vec train enwiki-latest-pages-articles.xml.bz2 MODEL_FILE +``` +Then, the learned embeddings are written to *MODEL\_FILE*. +Note that this command can take many optional parameters. +Please refer to [our documentation](https://wikipedia2vec.github.io/wikipedia2vec/commands/) for further details. +## Pretrained Embeddings +Pretrained embeddings for 12 languages (i.e., English, Arabic, Chinese, Dutch, French, German, Italian, Japanese, Polish, Portuguese, Russian, and Spanish) can be downloaded from [this page](https://wikipedia2vec.github.io/wikipedia2vec/pretrained/). +## Use Cases +Wikipedia2Vec has been applied to the following tasks: +* Entity linking: [Yamada et al., 2016](https://arxiv.org/abs/1601.01343), [Eshel et al., 2017](https://arxiv.org/abs/1706.09147), [Chen et al., 2019](https://arxiv.org/abs/1911.03834), [Poerner et al., 2020](https://arxiv.org/abs/1911.03681), [van Hulst et al., 2020](https://arxiv.org/abs/2006.01969). +* Named entity recognition: [Sato et al., 2017](http://www.aclweb.org/anthology/I17-2017), [Lara-Clares and Garcia-Serrano, 2019](http://ceur-ws.org/Vol-2421/eHealth-KD_paper_6.pdf). +* Question answering: [Yamada et al., 2017](https://arxiv.org/abs/1803.08652), [Poerner et al., 2020](https://arxiv.org/abs/1911.03681). +* Entity typing: [Yamada et al., 2018](https://arxiv.org/abs/1806.02960). +* Text classification: [Yamada et al., 2018](https://arxiv.org/abs/1806.02960), [Yamada and Shindo, 2019](https://arxiv.org/abs/1909.01259), [Alam et al., 2020](https://link.springer.com/chapter/10.1007/978-3-030-61244-3_9). +* Relation classification: [Poerner et al., 2020](https://arxiv.org/abs/1911.03681). +* Paraphrase detection: [Duong et al., 2018](https://ieeexplore.ieee.org/abstract/document/8606845). +* Knowledge graph completion: [Shah et al., 2019](https://aaai.org/ojs/index.php/AAAI/article/view/4162), [Shah et al., 2020](https://www.aclweb.org/anthology/2020.textgraphs-1.9/). +* Fake news detection: [Singh et al., 2019](https://arxiv.org/abs/1906.11126), [Ghosal et al., 2020](https://arxiv.org/abs/2010.10836). +* Plot analysis of movies: [Papalampidi et al., 2019](https://arxiv.org/abs/1908.10328). +* Novel entity discovery: [Zhang et al., 2020](https://arxiv.org/abs/2002.00206). +* Entity retrieval: [Gerritse et al., 2020](https://link.springer.com/chapter/10.1007%2F978-3-030-45439-5_7). +* Deepfake detection: [Zhong et al., 2020](https://arxiv.org/abs/2010.07475). +* Conversational information seeking: [Rodriguez et al., 2020](https://arxiv.org/abs/2005.00172). +* Query expansion: [Rosin et al., 2020](https://arxiv.org/abs/2012.12065). +## References +If you use Wikipedia2Vec in a scientific publication, please cite the following paper: +Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu Takefuji, Yuji Matsumoto, [Wikipedia2Vec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from Wikipedia](https://arxiv.org/abs/1812.06280). +``` +@inproceedings{yamada2020wikipedia2vec, + title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia", + author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji}, + booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations}, + year = {2020}, + publisher = {Association for Computational Linguistics}, + pages = {23--30} +} +``` +The embedding model was originally proposed in the following paper: +Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu Takefuji, [Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation](https://arxiv.org/abs/1601.01343). +``` +@inproceedings{yamada2016joint, + title={Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation}, + author={Yamada, Ikuya and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu}, + booktitle={Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning}, + year={2016}, + publisher={Association for Computational Linguistics}, + pages={250--259} +} +``` +The text classification model implemented in [this example](https://github.com/wikipedia2vec/wikipedia2vec/tree/master/examples/text_classification) was proposed in the following paper: +Ikuya Yamada, Hiroyuki Shindo, [Neural Attentive Bag-of-Entities Model for Text Classification](https://arxiv.org/abs/1909.01259). +``` +@article{yamada2019neural, + title={Neural Attentive Bag-of-Entities Model for Text Classification}, + author={Yamada, Ikuya and Shindo, Hiroyuki}, + booktitle={Proceedings of The 23th SIGNLL Conference on Computational Natural Language Learning}, + year={2019}, + publisher={Association for Computational Linguistics}, + pages = {563--573} +} +``` +## License +[Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0) + +%prep +%autosetup -n wikipedia2vec-1.0.5 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-wikipedia2vec -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.5-1 +- Package Spec generated @@ -0,0 +1 @@ +c007ec61d374d69b04ce89f9ae006c76 wikipedia2vec-1.0.5.tar.gz |
