summaryrefslogtreecommitdiff
path: root/python-word2word.spec
blob: 3c48b671d279df28c57c3ed51dee376391c10351 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
%global _empty_manifest_terminate_build 0
Name:		python-word2word
Version:	1.0.0
Release:	1
Summary:	Easy-to-use word translations for 3,564 language pairs
License:	Apache License 2.0
URL:		https://github.com/kakaobrain/word2word
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/1b/c8/6aa4d029236e5e021552ccaa6a01daadaf3d9a4b5b8f9babfb73db589134/word2word-1.0.0.tar.gz
BuildArch:	noarch

Requires:	python3-requests
Requires:	python3-wget
Requires:	python3-numpy
Requires:	python3-tqdm

%description
[![image](https://img.shields.io/pypi/v/word2word.svg)](https://pypi.org/project/word2word/)
[![image](https://img.shields.io/pypi/l/word2word.svg)](https://pypi.org/project/word2word/)
[![image](https://img.shields.io/pypi/pyversions/word2word.svg)](https://pypi.org/project/word2word/)
[![image](https://img.shields.io/badge/Say%20Thanks-!-1EAEDB.svg)](https://saythanks.io/to/kimdwkimdw)

# word2word

Easy-to-use word translations for 3,564 language pairs.

This is the official code accompanying [our LREC 2020 paper](https://arxiv.org/abs/1911.12019).

## Summary

* A large collection of freely & publicly available bilingual lexicons
    **for 3,564 language pairs across 62 unique languages.** 
* Easy-to-use Python interface for accessing top-k word translations and 
    for building a new bilingual lexicon from a custom parallel corpus.
* Constructed using a simple approach that yields bilingual lexicons with 
    high coverage and competitive translation quality.

## Usage

First, install the package using `pip`:
```shell script
pip install word2word
```

OR

```shell script
git clone https://github.com/kakaobrain/word2word
python setup.py install
```

Then, in Python, download the model and retrieve top-5 word translations 
of any given word to the desired language:
```python
from word2word import Word2word
en2fr = Word2word("en", "fr")
print(en2fr("apple"))
# out: ['pomme', 'pommes', 'pommier', 'tartes', 'fleurs']
```

![gif](./word2word.gif)

## Supported Languages

We provide top-k word-to-word translations across all available pairs 
    from [OpenSubtitles2018](http://opus.nlpl.eu/OpenSubtitles2018.php). 
This amounts to a total of 3,564 language pairs across 62 unique languages. 

The full list is provided [here](word2word/supporting_languages.txt).

## Methodology

Our approach computes top-k word translations based on 
the co-occurrence statistics between cross-lingual word pairs in a parallel corpus.
We additionally introduce a correction term that controls for any confounding effect
coming from other source words within the same sentence.
The resulting method is an efficient and scalable approach that allows us to
construct large bilingual dictionaries from any given parallel corpus. 

For more details, see the Methodology section of [our paper](https://arxiv.org/abs/1911.12019).


## Building a Bilingual Lexicon on a Custom Parallel Corpus

The `word2word` package also provides interface for 
building a custom bilingual lexicon using a different parallel corpus.
Here, we show an example of building one from 
the [Medline English-French dataset](https://drive.google.com/drive/folders/0B3UxRWA52hBjQjZmYlRZWHQ4SUE): 
```python
from word2word import Word2word

# custom parallel data: data/pubmed.en-fr.en, data/pubmed.en-fr.fr
my_en2fr = Word2word.make("en", "fr", "data/pubmed.en-fr")
# ...building...
print(my_en2fr("mitochondrial"))
# out: ['mitochondriale', 'mitochondriales', 'mitochondrial', 
#       'cytopathies', 'mitochondriaux']
```

When built from source, the bilingual lexicon can also be constructed from the command line as follows:
```shell script
python make.py --lang1 en --lang2 fr --datapref data/pubmed.en-fr
```

In both cases, the custom lexicon (saved to `datapref/` by default) can be re-loaded in Python:
```python
from word2word import Word2word
my_en2fr = Word2word.load("en", "fr", "data/pubmed.en-fr")
# Loaded word2word custom bilingual lexicon from data/pubmed.en-fr/en-fr.pkl
```

### Multiprocessing

In both the Python interface and the command line interface, 
`make` uses multiprocessing with 16 CPUs by default.
The number of CPU workers can be adjusted by setting 
`num_workers=N` (Python) or `--num_workers N` (command line).

## References

If you use word2word for research, please cite [our paper](https://arxiv.org/abs/1911.12019):
```bibtex
@inproceedings{choe2020word2word,
 author = {Yo Joong Choe and Kyubyong Park and Dongwoo Kim},
 title = {word2word: A Collection of Bilingual Lexicons for 3,564 Language Pairs},
 booktitle = {Proceedings of the 12th International Conference on Language Resources and Evaluation (LREC 2020)},
 year = {2020}
}
```

All of our pre-computed bilingual lexicons were constructed from the publicly available
    [OpenSubtitles2018](http://opus.nlpl.eu/OpenSubtitles2018.php) dataset:
```bibtex
@inproceedings{lison-etal-2018-opensubtitles2018,
    title = "{O}pen{S}ubtitles2018: Statistical Rescoring of Sentence Alignments in Large, Noisy Parallel Corpora",
    author = {Lison, Pierre  and
      Tiedemann, J{\"o}rg  and
      Kouylekov, Milen},
    booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
    month = may,
    year = "2018",
    address = "Miyazaki, Japan",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://www.aclweb.org/anthology/L18-1275",
}
```

## Authors

[Kyubyong Park](https://github.com/Kyubyong), 
[Dongwoo Kim](https://github.com/kimdwkimdw), and 
[YJ Choe](https://github.com/yjchoe)





%package -n python3-word2word
Summary:	Easy-to-use word translations for 3,564 language pairs
Provides:	python-word2word
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-word2word
[![image](https://img.shields.io/pypi/v/word2word.svg)](https://pypi.org/project/word2word/)
[![image](https://img.shields.io/pypi/l/word2word.svg)](https://pypi.org/project/word2word/)
[![image](https://img.shields.io/pypi/pyversions/word2word.svg)](https://pypi.org/project/word2word/)
[![image](https://img.shields.io/badge/Say%20Thanks-!-1EAEDB.svg)](https://saythanks.io/to/kimdwkimdw)

# word2word

Easy-to-use word translations for 3,564 language pairs.

This is the official code accompanying [our LREC 2020 paper](https://arxiv.org/abs/1911.12019).

## Summary

* A large collection of freely & publicly available bilingual lexicons
    **for 3,564 language pairs across 62 unique languages.** 
* Easy-to-use Python interface for accessing top-k word translations and 
    for building a new bilingual lexicon from a custom parallel corpus.
* Constructed using a simple approach that yields bilingual lexicons with 
    high coverage and competitive translation quality.

## Usage

First, install the package using `pip`:
```shell script
pip install word2word
```

OR

```shell script
git clone https://github.com/kakaobrain/word2word
python setup.py install
```

Then, in Python, download the model and retrieve top-5 word translations 
of any given word to the desired language:
```python
from word2word import Word2word
en2fr = Word2word("en", "fr")
print(en2fr("apple"))
# out: ['pomme', 'pommes', 'pommier', 'tartes', 'fleurs']
```

![gif](./word2word.gif)

## Supported Languages

We provide top-k word-to-word translations across all available pairs 
    from [OpenSubtitles2018](http://opus.nlpl.eu/OpenSubtitles2018.php). 
This amounts to a total of 3,564 language pairs across 62 unique languages. 

The full list is provided [here](word2word/supporting_languages.txt).

## Methodology

Our approach computes top-k word translations based on 
the co-occurrence statistics between cross-lingual word pairs in a parallel corpus.
We additionally introduce a correction term that controls for any confounding effect
coming from other source words within the same sentence.
The resulting method is an efficient and scalable approach that allows us to
construct large bilingual dictionaries from any given parallel corpus. 

For more details, see the Methodology section of [our paper](https://arxiv.org/abs/1911.12019).


## Building a Bilingual Lexicon on a Custom Parallel Corpus

The `word2word` package also provides interface for 
building a custom bilingual lexicon using a different parallel corpus.
Here, we show an example of building one from 
the [Medline English-French dataset](https://drive.google.com/drive/folders/0B3UxRWA52hBjQjZmYlRZWHQ4SUE): 
```python
from word2word import Word2word

# custom parallel data: data/pubmed.en-fr.en, data/pubmed.en-fr.fr
my_en2fr = Word2word.make("en", "fr", "data/pubmed.en-fr")
# ...building...
print(my_en2fr("mitochondrial"))
# out: ['mitochondriale', 'mitochondriales', 'mitochondrial', 
#       'cytopathies', 'mitochondriaux']
```

When built from source, the bilingual lexicon can also be constructed from the command line as follows:
```shell script
python make.py --lang1 en --lang2 fr --datapref data/pubmed.en-fr
```

In both cases, the custom lexicon (saved to `datapref/` by default) can be re-loaded in Python:
```python
from word2word import Word2word
my_en2fr = Word2word.load("en", "fr", "data/pubmed.en-fr")
# Loaded word2word custom bilingual lexicon from data/pubmed.en-fr/en-fr.pkl
```

### Multiprocessing

In both the Python interface and the command line interface, 
`make` uses multiprocessing with 16 CPUs by default.
The number of CPU workers can be adjusted by setting 
`num_workers=N` (Python) or `--num_workers N` (command line).

## References

If you use word2word for research, please cite [our paper](https://arxiv.org/abs/1911.12019):
```bibtex
@inproceedings{choe2020word2word,
 author = {Yo Joong Choe and Kyubyong Park and Dongwoo Kim},
 title = {word2word: A Collection of Bilingual Lexicons for 3,564 Language Pairs},
 booktitle = {Proceedings of the 12th International Conference on Language Resources and Evaluation (LREC 2020)},
 year = {2020}
}
```

All of our pre-computed bilingual lexicons were constructed from the publicly available
    [OpenSubtitles2018](http://opus.nlpl.eu/OpenSubtitles2018.php) dataset:
```bibtex
@inproceedings{lison-etal-2018-opensubtitles2018,
    title = "{O}pen{S}ubtitles2018: Statistical Rescoring of Sentence Alignments in Large, Noisy Parallel Corpora",
    author = {Lison, Pierre  and
      Tiedemann, J{\"o}rg  and
      Kouylekov, Milen},
    booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
    month = may,
    year = "2018",
    address = "Miyazaki, Japan",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://www.aclweb.org/anthology/L18-1275",
}
```

## Authors

[Kyubyong Park](https://github.com/Kyubyong), 
[Dongwoo Kim](https://github.com/kimdwkimdw), and 
[YJ Choe](https://github.com/yjchoe)





%package help
Summary:	Development documents and examples for word2word
Provides:	python3-word2word-doc
%description help
[![image](https://img.shields.io/pypi/v/word2word.svg)](https://pypi.org/project/word2word/)
[![image](https://img.shields.io/pypi/l/word2word.svg)](https://pypi.org/project/word2word/)
[![image](https://img.shields.io/pypi/pyversions/word2word.svg)](https://pypi.org/project/word2word/)
[![image](https://img.shields.io/badge/Say%20Thanks-!-1EAEDB.svg)](https://saythanks.io/to/kimdwkimdw)

# word2word

Easy-to-use word translations for 3,564 language pairs.

This is the official code accompanying [our LREC 2020 paper](https://arxiv.org/abs/1911.12019).

## Summary

* A large collection of freely & publicly available bilingual lexicons
    **for 3,564 language pairs across 62 unique languages.** 
* Easy-to-use Python interface for accessing top-k word translations and 
    for building a new bilingual lexicon from a custom parallel corpus.
* Constructed using a simple approach that yields bilingual lexicons with 
    high coverage and competitive translation quality.

## Usage

First, install the package using `pip`:
```shell script
pip install word2word
```

OR

```shell script
git clone https://github.com/kakaobrain/word2word
python setup.py install
```

Then, in Python, download the model and retrieve top-5 word translations 
of any given word to the desired language:
```python
from word2word import Word2word
en2fr = Word2word("en", "fr")
print(en2fr("apple"))
# out: ['pomme', 'pommes', 'pommier', 'tartes', 'fleurs']
```

![gif](./word2word.gif)

## Supported Languages

We provide top-k word-to-word translations across all available pairs 
    from [OpenSubtitles2018](http://opus.nlpl.eu/OpenSubtitles2018.php). 
This amounts to a total of 3,564 language pairs across 62 unique languages. 

The full list is provided [here](word2word/supporting_languages.txt).

## Methodology

Our approach computes top-k word translations based on 
the co-occurrence statistics between cross-lingual word pairs in a parallel corpus.
We additionally introduce a correction term that controls for any confounding effect
coming from other source words within the same sentence.
The resulting method is an efficient and scalable approach that allows us to
construct large bilingual dictionaries from any given parallel corpus. 

For more details, see the Methodology section of [our paper](https://arxiv.org/abs/1911.12019).


## Building a Bilingual Lexicon on a Custom Parallel Corpus

The `word2word` package also provides interface for 
building a custom bilingual lexicon using a different parallel corpus.
Here, we show an example of building one from 
the [Medline English-French dataset](https://drive.google.com/drive/folders/0B3UxRWA52hBjQjZmYlRZWHQ4SUE): 
```python
from word2word import Word2word

# custom parallel data: data/pubmed.en-fr.en, data/pubmed.en-fr.fr
my_en2fr = Word2word.make("en", "fr", "data/pubmed.en-fr")
# ...building...
print(my_en2fr("mitochondrial"))
# out: ['mitochondriale', 'mitochondriales', 'mitochondrial', 
#       'cytopathies', 'mitochondriaux']
```

When built from source, the bilingual lexicon can also be constructed from the command line as follows:
```shell script
python make.py --lang1 en --lang2 fr --datapref data/pubmed.en-fr
```

In both cases, the custom lexicon (saved to `datapref/` by default) can be re-loaded in Python:
```python
from word2word import Word2word
my_en2fr = Word2word.load("en", "fr", "data/pubmed.en-fr")
# Loaded word2word custom bilingual lexicon from data/pubmed.en-fr/en-fr.pkl
```

### Multiprocessing

In both the Python interface and the command line interface, 
`make` uses multiprocessing with 16 CPUs by default.
The number of CPU workers can be adjusted by setting 
`num_workers=N` (Python) or `--num_workers N` (command line).

## References

If you use word2word for research, please cite [our paper](https://arxiv.org/abs/1911.12019):
```bibtex
@inproceedings{choe2020word2word,
 author = {Yo Joong Choe and Kyubyong Park and Dongwoo Kim},
 title = {word2word: A Collection of Bilingual Lexicons for 3,564 Language Pairs},
 booktitle = {Proceedings of the 12th International Conference on Language Resources and Evaluation (LREC 2020)},
 year = {2020}
}
```

All of our pre-computed bilingual lexicons were constructed from the publicly available
    [OpenSubtitles2018](http://opus.nlpl.eu/OpenSubtitles2018.php) dataset:
```bibtex
@inproceedings{lison-etal-2018-opensubtitles2018,
    title = "{O}pen{S}ubtitles2018: Statistical Rescoring of Sentence Alignments in Large, Noisy Parallel Corpora",
    author = {Lison, Pierre  and
      Tiedemann, J{\"o}rg  and
      Kouylekov, Milen},
    booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
    month = may,
    year = "2018",
    address = "Miyazaki, Japan",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://www.aclweb.org/anthology/L18-1275",
}
```

## Authors

[Kyubyong Park](https://github.com/Kyubyong), 
[Dongwoo Kim](https://github.com/kimdwkimdw), and 
[YJ Choe](https://github.com/yjchoe)





%prep
%autosetup -n word2word-1.0.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-word2word -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.0-1
- Package Spec generated