summaryrefslogtreecommitdiff
path: root/python-wordnet.spec
blob: a7c541b57132282010384bff54bcac80c26133d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
%global _empty_manifest_terminate_build 0
Name:		python-wordnet
Version:	0.0.1b2
Release:	1
Summary:	An module to create network of words on bases of realtive sense under a corpus of document.
License:	GNU General Public License v3
URL:		https://anuragkumarak95.github.io/wordnet/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/e5/c9/93f89fc3613db301ff92be67aa67a5f9e4b5e212081ce3569e84a9e57304/wordnet-0.0.1b2.tar.gz
BuildArch:	noarch


%description
# WordNet

[![Build Status](https://travis-ci.org/anuragkumarak95/wordnet.svg?branch=master)](https://travis-ci.org/anuragkumarak95/wordnet)
[![codecov](https://codecov.io/gh/anuragkumarak95/wordnet/branch/master/graph/badge.svg)](https://codecov.io/gh/anuragkumarak95/wordnet)
[![Requirements Status](https://requires.io/github/anuragkumarak95/wordnet/requirements.svg?branch=master)](https://requires.io/github/anuragkumarak95/wordnet/requirements/?branch=master)

Create a Simple **network of words** related to each other using **Twitter Streaming API**.

![Made with python-3.5](http://forthebadge.com/images/badges/made-with-python.svg)

Major parts of this project.

* `Streamer` : ~/twitter_streaming.py
* `TF-IDF` Gene : ~/wordnet/tf_idf_generator.py
* `NN` words Gene :~/ wordnet/nn_words.py
* `NETWORK` Gene : ~/wordnet/word_net.py

## Using Streamer Functionality

1. `Clone this repo` and run on bash '`$pip install -r requirements.txt`' @ root directory and you will be ready to go..

1. Go to root-dir(~), Create a config.py file with details mentioned below:
    ```python
    # Variables that contains the user credentials to access Twitter Streaming API
    # this link will help you(http://socialmedia-class.org/twittertutorial.html)
    access_token = "xxx-xx-xxxx"
    access_token_secret = "xxxxx"
    consumer_key = "xxxxxx"
    consumer_secret = "xxxxxxxx"
    ```
1. run `Streamer` with an array of filter words that you want to fetch tweets on. eg. `$python twitter_streaming.py hello hi hallo namaste > data_file.txt` this will save a line by line words from tweets filtered according to words used as args in `data_file.txt`.

## Using WordNet Module

1. `Clone this repo` and install wordnet module using this script,

        $python setup.py install

1. To create a `TF-IDF` structure file for every doc, use:

    ```python
    from wordnet import find_tf_idf

    df, tf_idf = find_tf_idf(
    file_names=['file/path1','file/path2',..],       # paths of files to be processed.(create using twitter_streamer.py)
    prev_file_path='prev/tf/idf/file/path.tfidfpkl', # prev TF_IDF file to modify over, format standard is .tfidfpkl. default = None
    dump_path='path/to/dump/file.tfidfpkl'           # dump_path if tf-idf needs to be dumped, format standard is .tfidfpkl. default = None
    )

    '''
    if no file is provided prev_file_path parameter, new TF-IDF file will be generated ,and else
    TF-IDF values will be combined with previous file, and dumped at dump_path if mentioned,
    else will only return the new tf-idf list of dictionaries, and df dictionary.
    '''
    ```
1. To use `NN` Word Gene of this module, simply use wordnet.find_knn:

    ```python
    from wordnet import find_knn

    words = find_knn(
    tf_idf=tf_idf,       # this tf_idf is returned by find_tf_idf() above.
    input_word='german', # a word for which k nearest neighbours are required.
    k=10,                # k = number of neighbours required, default=10
    rand_on=True         # rand_on = either to randomly skip few words or show initial k words default=True
    )

    '''
    This function will return a list of words closely related to provided input_word refering to
    tf_idf var provided to it. either use find_tf_idf() to gather this var or pickle.load() a dump
    file dumped by the same function at your choosen directory. the file contains 2 lists in format
    (idf, tf_idf).
    '''
    ```

1. To create a Word `Network`, use :

    ```python
    from wordnet import generate_net

    word_net = generate_net(
    df=df,                          # this df is returned by find_tf_idf() above.
    tf_idf=tf_idf,                  # this tf_idf is returned by find_tf_idf() above.
    dump_path='path/to/dump.wrnt'   # dump_path = path to dump the generated files, format standard is .wrnt. default=None
    )

    '''
    this function returns a dict of Word entities, with word as key.
    '''
    ```

1. To retrieve a Word `Network`, use :

    ```python
    from wordnet import retrieve_net

    word_net = retrieve_net(
        'path/to/network.wrnt' # path to network file, format standard is .wrnt.
        )
    '''
    this function returns a dictionary of Word entities, with word as key.
    '''
    ```

1. To retrieve list of words that are at some depth form a root word in the network, use:

    ```python
    from wordnet import return_net

    words = return_net(
        word,       # root word in this process.
        word_net,   # word network generated from generate_net()
        depth=1    # depth to which you wish this word collector to traverse.
    )
    '''
    This function returns a list of words that are at provided depth from root word in the
    network provided.
    '''
    ```

### Test Run

To run a formal test, simply run this script. `python test.py`, this module will return **0** if everythinig worked as expected.

test.py uses sample data provided [here](https://github.com/anuragkumarak95/wordnet/tree/master/test) and executes unittest on `find_tf_idf()`, `find_knn()` & `generate_net()`.

> `Streamer` functionality will not be provided under distribution of this code. That is just a script independent from the module.

#### Contributions Are welcomed here

![BUILT WITH LOVE](http://forthebadge.com/images/badges/built-with-love.svg)

by [@Anurag](https://github.com/anuragkumarak95)


%package -n python3-wordnet
Summary:	An module to create network of words on bases of realtive sense under a corpus of document.
Provides:	python-wordnet
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-wordnet
# WordNet

[![Build Status](https://travis-ci.org/anuragkumarak95/wordnet.svg?branch=master)](https://travis-ci.org/anuragkumarak95/wordnet)
[![codecov](https://codecov.io/gh/anuragkumarak95/wordnet/branch/master/graph/badge.svg)](https://codecov.io/gh/anuragkumarak95/wordnet)
[![Requirements Status](https://requires.io/github/anuragkumarak95/wordnet/requirements.svg?branch=master)](https://requires.io/github/anuragkumarak95/wordnet/requirements/?branch=master)

Create a Simple **network of words** related to each other using **Twitter Streaming API**.

![Made with python-3.5](http://forthebadge.com/images/badges/made-with-python.svg)

Major parts of this project.

* `Streamer` : ~/twitter_streaming.py
* `TF-IDF` Gene : ~/wordnet/tf_idf_generator.py
* `NN` words Gene :~/ wordnet/nn_words.py
* `NETWORK` Gene : ~/wordnet/word_net.py

## Using Streamer Functionality

1. `Clone this repo` and run on bash '`$pip install -r requirements.txt`' @ root directory and you will be ready to go..

1. Go to root-dir(~), Create a config.py file with details mentioned below:
    ```python
    # Variables that contains the user credentials to access Twitter Streaming API
    # this link will help you(http://socialmedia-class.org/twittertutorial.html)
    access_token = "xxx-xx-xxxx"
    access_token_secret = "xxxxx"
    consumer_key = "xxxxxx"
    consumer_secret = "xxxxxxxx"
    ```
1. run `Streamer` with an array of filter words that you want to fetch tweets on. eg. `$python twitter_streaming.py hello hi hallo namaste > data_file.txt` this will save a line by line words from tweets filtered according to words used as args in `data_file.txt`.

## Using WordNet Module

1. `Clone this repo` and install wordnet module using this script,

        $python setup.py install

1. To create a `TF-IDF` structure file for every doc, use:

    ```python
    from wordnet import find_tf_idf

    df, tf_idf = find_tf_idf(
    file_names=['file/path1','file/path2',..],       # paths of files to be processed.(create using twitter_streamer.py)
    prev_file_path='prev/tf/idf/file/path.tfidfpkl', # prev TF_IDF file to modify over, format standard is .tfidfpkl. default = None
    dump_path='path/to/dump/file.tfidfpkl'           # dump_path if tf-idf needs to be dumped, format standard is .tfidfpkl. default = None
    )

    '''
    if no file is provided prev_file_path parameter, new TF-IDF file will be generated ,and else
    TF-IDF values will be combined with previous file, and dumped at dump_path if mentioned,
    else will only return the new tf-idf list of dictionaries, and df dictionary.
    '''
    ```
1. To use `NN` Word Gene of this module, simply use wordnet.find_knn:

    ```python
    from wordnet import find_knn

    words = find_knn(
    tf_idf=tf_idf,       # this tf_idf is returned by find_tf_idf() above.
    input_word='german', # a word for which k nearest neighbours are required.
    k=10,                # k = number of neighbours required, default=10
    rand_on=True         # rand_on = either to randomly skip few words or show initial k words default=True
    )

    '''
    This function will return a list of words closely related to provided input_word refering to
    tf_idf var provided to it. either use find_tf_idf() to gather this var or pickle.load() a dump
    file dumped by the same function at your choosen directory. the file contains 2 lists in format
    (idf, tf_idf).
    '''
    ```

1. To create a Word `Network`, use :

    ```python
    from wordnet import generate_net

    word_net = generate_net(
    df=df,                          # this df is returned by find_tf_idf() above.
    tf_idf=tf_idf,                  # this tf_idf is returned by find_tf_idf() above.
    dump_path='path/to/dump.wrnt'   # dump_path = path to dump the generated files, format standard is .wrnt. default=None
    )

    '''
    this function returns a dict of Word entities, with word as key.
    '''
    ```

1. To retrieve a Word `Network`, use :

    ```python
    from wordnet import retrieve_net

    word_net = retrieve_net(
        'path/to/network.wrnt' # path to network file, format standard is .wrnt.
        )
    '''
    this function returns a dictionary of Word entities, with word as key.
    '''
    ```

1. To retrieve list of words that are at some depth form a root word in the network, use:

    ```python
    from wordnet import return_net

    words = return_net(
        word,       # root word in this process.
        word_net,   # word network generated from generate_net()
        depth=1    # depth to which you wish this word collector to traverse.
    )
    '''
    This function returns a list of words that are at provided depth from root word in the
    network provided.
    '''
    ```

### Test Run

To run a formal test, simply run this script. `python test.py`, this module will return **0** if everythinig worked as expected.

test.py uses sample data provided [here](https://github.com/anuragkumarak95/wordnet/tree/master/test) and executes unittest on `find_tf_idf()`, `find_knn()` & `generate_net()`.

> `Streamer` functionality will not be provided under distribution of this code. That is just a script independent from the module.

#### Contributions Are welcomed here

![BUILT WITH LOVE](http://forthebadge.com/images/badges/built-with-love.svg)

by [@Anurag](https://github.com/anuragkumarak95)


%package help
Summary:	Development documents and examples for wordnet
Provides:	python3-wordnet-doc
%description help
# WordNet

[![Build Status](https://travis-ci.org/anuragkumarak95/wordnet.svg?branch=master)](https://travis-ci.org/anuragkumarak95/wordnet)
[![codecov](https://codecov.io/gh/anuragkumarak95/wordnet/branch/master/graph/badge.svg)](https://codecov.io/gh/anuragkumarak95/wordnet)
[![Requirements Status](https://requires.io/github/anuragkumarak95/wordnet/requirements.svg?branch=master)](https://requires.io/github/anuragkumarak95/wordnet/requirements/?branch=master)

Create a Simple **network of words** related to each other using **Twitter Streaming API**.

![Made with python-3.5](http://forthebadge.com/images/badges/made-with-python.svg)

Major parts of this project.

* `Streamer` : ~/twitter_streaming.py
* `TF-IDF` Gene : ~/wordnet/tf_idf_generator.py
* `NN` words Gene :~/ wordnet/nn_words.py
* `NETWORK` Gene : ~/wordnet/word_net.py

## Using Streamer Functionality

1. `Clone this repo` and run on bash '`$pip install -r requirements.txt`' @ root directory and you will be ready to go..

1. Go to root-dir(~), Create a config.py file with details mentioned below:
    ```python
    # Variables that contains the user credentials to access Twitter Streaming API
    # this link will help you(http://socialmedia-class.org/twittertutorial.html)
    access_token = "xxx-xx-xxxx"
    access_token_secret = "xxxxx"
    consumer_key = "xxxxxx"
    consumer_secret = "xxxxxxxx"
    ```
1. run `Streamer` with an array of filter words that you want to fetch tweets on. eg. `$python twitter_streaming.py hello hi hallo namaste > data_file.txt` this will save a line by line words from tweets filtered according to words used as args in `data_file.txt`.

## Using WordNet Module

1. `Clone this repo` and install wordnet module using this script,

        $python setup.py install

1. To create a `TF-IDF` structure file for every doc, use:

    ```python
    from wordnet import find_tf_idf

    df, tf_idf = find_tf_idf(
    file_names=['file/path1','file/path2',..],       # paths of files to be processed.(create using twitter_streamer.py)
    prev_file_path='prev/tf/idf/file/path.tfidfpkl', # prev TF_IDF file to modify over, format standard is .tfidfpkl. default = None
    dump_path='path/to/dump/file.tfidfpkl'           # dump_path if tf-idf needs to be dumped, format standard is .tfidfpkl. default = None
    )

    '''
    if no file is provided prev_file_path parameter, new TF-IDF file will be generated ,and else
    TF-IDF values will be combined with previous file, and dumped at dump_path if mentioned,
    else will only return the new tf-idf list of dictionaries, and df dictionary.
    '''
    ```
1. To use `NN` Word Gene of this module, simply use wordnet.find_knn:

    ```python
    from wordnet import find_knn

    words = find_knn(
    tf_idf=tf_idf,       # this tf_idf is returned by find_tf_idf() above.
    input_word='german', # a word for which k nearest neighbours are required.
    k=10,                # k = number of neighbours required, default=10
    rand_on=True         # rand_on = either to randomly skip few words or show initial k words default=True
    )

    '''
    This function will return a list of words closely related to provided input_word refering to
    tf_idf var provided to it. either use find_tf_idf() to gather this var or pickle.load() a dump
    file dumped by the same function at your choosen directory. the file contains 2 lists in format
    (idf, tf_idf).
    '''
    ```

1. To create a Word `Network`, use :

    ```python
    from wordnet import generate_net

    word_net = generate_net(
    df=df,                          # this df is returned by find_tf_idf() above.
    tf_idf=tf_idf,                  # this tf_idf is returned by find_tf_idf() above.
    dump_path='path/to/dump.wrnt'   # dump_path = path to dump the generated files, format standard is .wrnt. default=None
    )

    '''
    this function returns a dict of Word entities, with word as key.
    '''
    ```

1. To retrieve a Word `Network`, use :

    ```python
    from wordnet import retrieve_net

    word_net = retrieve_net(
        'path/to/network.wrnt' # path to network file, format standard is .wrnt.
        )
    '''
    this function returns a dictionary of Word entities, with word as key.
    '''
    ```

1. To retrieve list of words that are at some depth form a root word in the network, use:

    ```python
    from wordnet import return_net

    words = return_net(
        word,       # root word in this process.
        word_net,   # word network generated from generate_net()
        depth=1    # depth to which you wish this word collector to traverse.
    )
    '''
    This function returns a list of words that are at provided depth from root word in the
    network provided.
    '''
    ```

### Test Run

To run a formal test, simply run this script. `python test.py`, this module will return **0** if everythinig worked as expected.

test.py uses sample data provided [here](https://github.com/anuragkumarak95/wordnet/tree/master/test) and executes unittest on `find_tf_idf()`, `find_knn()` & `generate_net()`.

> `Streamer` functionality will not be provided under distribution of this code. That is just a script independent from the module.

#### Contributions Are welcomed here

![BUILT WITH LOVE](http://forthebadge.com/images/badges/built-with-love.svg)

by [@Anurag](https://github.com/anuragkumarak95)


%prep
%autosetup -n wordnet-0.0.1b2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-wordnet -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.1b2-1
- Package Spec generated