1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
|
%global _empty_manifest_terminate_build 0
Name: python-youtokentome
Version: 1.0.6
Release: 1
Summary: Unsupervised text tokenizer focused on computational efficiency
License: MIT
URL: https://github.com/vkcom/youtokentome
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/9a/ae/f8b0d15696766eb35dda6cf84a23d42ae7f3ba37aa30e5e2287fd94ac053/youtokentome-1.0.6.tar.gz
BuildArch: noarch
Requires: python3-Click
%description

[](https://pepy.tech/project/youtokentome)
[](https://github.com/python/black)

[](https://travis-ci.org/VKCOM/YouTokenToMe)
# YouTokenToMe
YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE) [[Sennrich et al.](https://www.aclweb.org/anthology/P16-1162)].
Our implementation is much faster in training and tokenization than [Hugging Face](https://github.com/huggingface/tokenizers), [fastBPE](https://github.com/glample/fastBPE)
and [SentencePiece](https://github.com/google/sentencepiece). In some test cases, it is 90 times faster.
Check out our [benchmark](benchmark.md) results.
Key advantages:
* Multithreading for training and tokenization
* The algorithm has `O(N)` complexity, where `N` is the length of training data
* Highly efficient implementation in C++
* Python wrapper and command-line interface
Extra features:
* BPE-dropout (as described in [Provilkov et al, 2019](https://arxiv.org/abs/1910.13267))
As well as in the algorithm from the original paper, ours does not consider tokens
that cross word boundaries. Just like in [SentencePiece](https://github.com/google/sentencepiece), all space symbols were replaced by meta symbol "▁" (U+2581). It allows sequences of tokens to be converted back to text and for word boundaries to be restored.
For example, the phrase ```Blazingly fast tokenization!``` can be tokenized into
`['▁Bl', 'az', 'ingly', '▁fast', '▁token', 'ization', '!']`
## Installation
```bash
pip install youtokentome
```
## Python interface
### Example
Let's start with a self-contained example.
```python
import random
import youtokentome as yttm
train_data_path = "train_data.txt"
model_path = "example.model"
# Generating random file with training data
# 10000 lines with 100 characters in each line
n_lines = 10000
n_characters = 100
with open(train_data_path, "w") as fout:
for _ in range(n_lines):
print("".join([random.choice("abcd ") for _ in range(n_characters)]), file=fout)
# Generating random text
test_text = "".join([random.choice("abcde ") for _ in range(100)])
# Training model
yttm.BPE.train(data=train_data_path, vocab_size=5000, model=model_path)
# Loading model
bpe = yttm.BPE(model=model_path)
# Two types of tokenization
print(bpe.encode([test_text], output_type=yttm.OutputType.ID))
print(bpe.encode([test_text], output_type=yttm.OutputType.SUBWORD))
```
### Training model
```python
youtokentome.BPE.train(data, model, vocab_size, coverage, n_threads=-1, pad_id=0, unk_id=1, bos_id=2, eos_id=3)
```
Trains BPE model and saves to file.
**Args:**
* `data`: string, path to file with training data
* `model`: string, path to where the trained model will be saved
* `vocab_size`: int, number of tokens in the final vocabulary
* `coverage`: float, fraction of characters covered by the model. Must be in the range [0, 1]. A good value to use is about 0.9999.
* `n_threads`: int, number of parallel threads used to run. If -1 is passed, then all available threads are going to be used. Note that the number of threads is limited by 8 (see [benchmark](benchmark.md#number-of-threads)).
* `pad_id`: int, reserved id for padding
* `unk_id`: int, reserved id for unknown symbols
* `bos_id`: int, reserved id for begin of sentence token
* `eos_id`: int, reserved id for end of sentence token
**Returns**: Class `youtokentome.BPE` with the loaded model.
### Model loading
```python
youtokentome.BPE(model, n_threads=-1)
```
Class constructor. Loads the trained model.
* `model`: string, path to the trained model
* `n_threads`: int, number of parallel threads used to run.
If equal to -1, then the maximum number of threads available will be used.
### Methods
Class `youtokentome.BPE` has the following methods:
#### encode
```python
encode(self, sentences, output_type=yttm.OutputType.ID, bos=False, eos=False, reverse=False, dropout_prob=0)
```
**Args:**
* `sentences`: list of strings, sentences for tokenization.
* `output_type`: enum, sentence can be tokenized to ids or subwords. Use `OutputType.ID` for ids and `OutputType.SUBWORD` for subwords.
* `bos`: bool, if True then token “beginning of sentence” will be added
* `eos`: bool, if True then token “end of sentence” will be added
* `reverse`: bool, if True the output sequence of tokens will be reversed
* `dropout_prob`: float, BPE-dropout probability (the probability of a merge being dropped). Must be in the range [0, 1].
**Returns:** If `output_type` is equal to `youtokentome.OutputType.ID` or `youtokentome.OutputType.SUBWORD`
then a list of lists of integers or list of lists of strings will be returned
respectively.
#### vocab
```python
vocab(self)
```
**Returns:** A list `vocab_size` strings. The i-th string in the list corresponds
to i-th subword.
#### vocab_size
```python
vocab_size(self)
```
**Returns:** int. Size of vocabulary.
#### subword_to_id
```python
subword_to_id(self, subword)
```
**Args:**
* `subword`: string.
**Returns:**
Integer from the range [0, vocab_size-1]. Id of subword or,
if there is no such subword in the vocabulary, `unk_id` will be
returned.
#### id_to_subword
```python
id_to_subword(self, id)
```
**Args:**
* `id`: int, must be in the range [0, vocab_size-1]
**Returns:** string. Subword from vocabulary by id.
#### decode
```python
decode(self, ids, ignore_ids=None)
```
Convert each id to subword and concatenate with space symbol.
**Args:**
* `ids`: list of lists of integers. All integers must be in the range [0, vocab_size-1]
* `ignore_ids`: collection of integers. These indices would be ignored during the decoding. All integers must be in the range [0, vocab_size-1] [default: None]
**Returns:** List of strings.
## Command line interface
### Example
```bash
$ yttm bpe --data TRAINING_DATA_FILE --model OUTPUT_MODEL_FILE --vocab_size 2000
$ yttm encode --model OUTPUT_MODEL_FILE --output_type subword < TEST_DATA_FILE > ENCODED_DATA
```
### Supported commands
`YouTokenToMe` supports the following commands:
```
$ yttm --help
Usage: yttm [OPTIONS] COMMAND [ARGS]...
Options:
--help Show this message and exit.
Commands:
bpe Train BPE model.
decode Decode ids to text.
encode Encode text to ids or subwords.
vocab Print list of learned subwords.
```
Command `bpe` allows you to train Byte Pair Encoding model based on a text file.
```
$ yttm bpe --help
Usage: yttm bpe [OPTIONS]
Train BPE model.
Options:
--data PATH Training data file path. [required]
--model PATH Output model file path. [required]
--vocab_size INTEGER Number of tokens in the final vocabulary. [required]
--coverage FLOAT Fraction of characters covered by the model. [default: 1.0]
--n_threads INTEGER Number of threads. [default: -1]
--pad_id INTEGER Padding token id. [default: 0]
--unk_id INTEGER Unknown token id. [default: 1]
--bos_id INTEGER 'Begin of sentence' token id. [default: 2]
--eos_id INTEGER 'End of sentence' token id. [default: 3]
--help Show this message and exit.
```
Apply BPE encoding for a corpus of sentences. Use `stdin` for input and `stdout` for output.
By default, encoding works in parallel using `n_threads` threads. Number of threads is limited by
8 (see [benchmark](benchmark.md#number-of-threads)).
With the `--stream` option, `--n_threads` will be ignored and all sentences will be processed one by one.
Each sentence will be tokenized and written to the `stdout` before the next sentence is read.
```
$ yttm encode --help
Usage: yttm encode [OPTIONS]
Encode text to ids or subwords.
Options:
--model PATH Path to file with learned model. [required]
--output_type TEXT 'id' or 'subword'. [required]
--n_threads INTEGER Number of threads. [default: -1]
--bos Add tab 'begin of sentence'.
--eos Add tab 'end of sentence'.
--reverse Reverse output sequence of tokens.
--stream Process each line before reading the next one.
--dropout_prob BPE-dropout probability (the probability of a merge being dropped). [default: 0]
--help Show this message and exit.
```
Print vocabulary. This can be useful for understanding the model.
```
$ yttm vocab --help
Usage: yttm vocab [OPTIONS]
Print list of learned subwords.
Options:
--model PATH Path to file with learned model. [required]
--verbose Add merging rules.
--help Show this message and exit.
```
Convert ids back to text. Use `stdin` for input and `stdout` for output.
```
$ yttm decode --help
Usage: yttm decode [OPTIONS]
Decode ids to text.
Options:
--model PATH Path to file with learned model. [required]
--ignore_ids List of indices to ignore for decoding. Example: --ignore_ids=1,2,3
--help Show this message and exit.
```
%package -n python3-youtokentome
Summary: Unsupervised text tokenizer focused on computational efficiency
Provides: python-youtokentome
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-youtokentome

[](https://pepy.tech/project/youtokentome)
[](https://github.com/python/black)

[](https://travis-ci.org/VKCOM/YouTokenToMe)
# YouTokenToMe
YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE) [[Sennrich et al.](https://www.aclweb.org/anthology/P16-1162)].
Our implementation is much faster in training and tokenization than [Hugging Face](https://github.com/huggingface/tokenizers), [fastBPE](https://github.com/glample/fastBPE)
and [SentencePiece](https://github.com/google/sentencepiece). In some test cases, it is 90 times faster.
Check out our [benchmark](benchmark.md) results.
Key advantages:
* Multithreading for training and tokenization
* The algorithm has `O(N)` complexity, where `N` is the length of training data
* Highly efficient implementation in C++
* Python wrapper and command-line interface
Extra features:
* BPE-dropout (as described in [Provilkov et al, 2019](https://arxiv.org/abs/1910.13267))
As well as in the algorithm from the original paper, ours does not consider tokens
that cross word boundaries. Just like in [SentencePiece](https://github.com/google/sentencepiece), all space symbols were replaced by meta symbol "▁" (U+2581). It allows sequences of tokens to be converted back to text and for word boundaries to be restored.
For example, the phrase ```Blazingly fast tokenization!``` can be tokenized into
`['▁Bl', 'az', 'ingly', '▁fast', '▁token', 'ization', '!']`
## Installation
```bash
pip install youtokentome
```
## Python interface
### Example
Let's start with a self-contained example.
```python
import random
import youtokentome as yttm
train_data_path = "train_data.txt"
model_path = "example.model"
# Generating random file with training data
# 10000 lines with 100 characters in each line
n_lines = 10000
n_characters = 100
with open(train_data_path, "w") as fout:
for _ in range(n_lines):
print("".join([random.choice("abcd ") for _ in range(n_characters)]), file=fout)
# Generating random text
test_text = "".join([random.choice("abcde ") for _ in range(100)])
# Training model
yttm.BPE.train(data=train_data_path, vocab_size=5000, model=model_path)
# Loading model
bpe = yttm.BPE(model=model_path)
# Two types of tokenization
print(bpe.encode([test_text], output_type=yttm.OutputType.ID))
print(bpe.encode([test_text], output_type=yttm.OutputType.SUBWORD))
```
### Training model
```python
youtokentome.BPE.train(data, model, vocab_size, coverage, n_threads=-1, pad_id=0, unk_id=1, bos_id=2, eos_id=3)
```
Trains BPE model and saves to file.
**Args:**
* `data`: string, path to file with training data
* `model`: string, path to where the trained model will be saved
* `vocab_size`: int, number of tokens in the final vocabulary
* `coverage`: float, fraction of characters covered by the model. Must be in the range [0, 1]. A good value to use is about 0.9999.
* `n_threads`: int, number of parallel threads used to run. If -1 is passed, then all available threads are going to be used. Note that the number of threads is limited by 8 (see [benchmark](benchmark.md#number-of-threads)).
* `pad_id`: int, reserved id for padding
* `unk_id`: int, reserved id for unknown symbols
* `bos_id`: int, reserved id for begin of sentence token
* `eos_id`: int, reserved id for end of sentence token
**Returns**: Class `youtokentome.BPE` with the loaded model.
### Model loading
```python
youtokentome.BPE(model, n_threads=-1)
```
Class constructor. Loads the trained model.
* `model`: string, path to the trained model
* `n_threads`: int, number of parallel threads used to run.
If equal to -1, then the maximum number of threads available will be used.
### Methods
Class `youtokentome.BPE` has the following methods:
#### encode
```python
encode(self, sentences, output_type=yttm.OutputType.ID, bos=False, eos=False, reverse=False, dropout_prob=0)
```
**Args:**
* `sentences`: list of strings, sentences for tokenization.
* `output_type`: enum, sentence can be tokenized to ids or subwords. Use `OutputType.ID` for ids and `OutputType.SUBWORD` for subwords.
* `bos`: bool, if True then token “beginning of sentence” will be added
* `eos`: bool, if True then token “end of sentence” will be added
* `reverse`: bool, if True the output sequence of tokens will be reversed
* `dropout_prob`: float, BPE-dropout probability (the probability of a merge being dropped). Must be in the range [0, 1].
**Returns:** If `output_type` is equal to `youtokentome.OutputType.ID` or `youtokentome.OutputType.SUBWORD`
then a list of lists of integers or list of lists of strings will be returned
respectively.
#### vocab
```python
vocab(self)
```
**Returns:** A list `vocab_size` strings. The i-th string in the list corresponds
to i-th subword.
#### vocab_size
```python
vocab_size(self)
```
**Returns:** int. Size of vocabulary.
#### subword_to_id
```python
subword_to_id(self, subword)
```
**Args:**
* `subword`: string.
**Returns:**
Integer from the range [0, vocab_size-1]. Id of subword or,
if there is no such subword in the vocabulary, `unk_id` will be
returned.
#### id_to_subword
```python
id_to_subword(self, id)
```
**Args:**
* `id`: int, must be in the range [0, vocab_size-1]
**Returns:** string. Subword from vocabulary by id.
#### decode
```python
decode(self, ids, ignore_ids=None)
```
Convert each id to subword and concatenate with space symbol.
**Args:**
* `ids`: list of lists of integers. All integers must be in the range [0, vocab_size-1]
* `ignore_ids`: collection of integers. These indices would be ignored during the decoding. All integers must be in the range [0, vocab_size-1] [default: None]
**Returns:** List of strings.
## Command line interface
### Example
```bash
$ yttm bpe --data TRAINING_DATA_FILE --model OUTPUT_MODEL_FILE --vocab_size 2000
$ yttm encode --model OUTPUT_MODEL_FILE --output_type subword < TEST_DATA_FILE > ENCODED_DATA
```
### Supported commands
`YouTokenToMe` supports the following commands:
```
$ yttm --help
Usage: yttm [OPTIONS] COMMAND [ARGS]...
Options:
--help Show this message and exit.
Commands:
bpe Train BPE model.
decode Decode ids to text.
encode Encode text to ids or subwords.
vocab Print list of learned subwords.
```
Command `bpe` allows you to train Byte Pair Encoding model based on a text file.
```
$ yttm bpe --help
Usage: yttm bpe [OPTIONS]
Train BPE model.
Options:
--data PATH Training data file path. [required]
--model PATH Output model file path. [required]
--vocab_size INTEGER Number of tokens in the final vocabulary. [required]
--coverage FLOAT Fraction of characters covered by the model. [default: 1.0]
--n_threads INTEGER Number of threads. [default: -1]
--pad_id INTEGER Padding token id. [default: 0]
--unk_id INTEGER Unknown token id. [default: 1]
--bos_id INTEGER 'Begin of sentence' token id. [default: 2]
--eos_id INTEGER 'End of sentence' token id. [default: 3]
--help Show this message and exit.
```
Apply BPE encoding for a corpus of sentences. Use `stdin` for input and `stdout` for output.
By default, encoding works in parallel using `n_threads` threads. Number of threads is limited by
8 (see [benchmark](benchmark.md#number-of-threads)).
With the `--stream` option, `--n_threads` will be ignored and all sentences will be processed one by one.
Each sentence will be tokenized and written to the `stdout` before the next sentence is read.
```
$ yttm encode --help
Usage: yttm encode [OPTIONS]
Encode text to ids or subwords.
Options:
--model PATH Path to file with learned model. [required]
--output_type TEXT 'id' or 'subword'. [required]
--n_threads INTEGER Number of threads. [default: -1]
--bos Add tab 'begin of sentence'.
--eos Add tab 'end of sentence'.
--reverse Reverse output sequence of tokens.
--stream Process each line before reading the next one.
--dropout_prob BPE-dropout probability (the probability of a merge being dropped). [default: 0]
--help Show this message and exit.
```
Print vocabulary. This can be useful for understanding the model.
```
$ yttm vocab --help
Usage: yttm vocab [OPTIONS]
Print list of learned subwords.
Options:
--model PATH Path to file with learned model. [required]
--verbose Add merging rules.
--help Show this message and exit.
```
Convert ids back to text. Use `stdin` for input and `stdout` for output.
```
$ yttm decode --help
Usage: yttm decode [OPTIONS]
Decode ids to text.
Options:
--model PATH Path to file with learned model. [required]
--ignore_ids List of indices to ignore for decoding. Example: --ignore_ids=1,2,3
--help Show this message and exit.
```
%package help
Summary: Development documents and examples for youtokentome
Provides: python3-youtokentome-doc
%description help

[](https://pepy.tech/project/youtokentome)
[](https://github.com/python/black)

[](https://travis-ci.org/VKCOM/YouTokenToMe)
# YouTokenToMe
YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE) [[Sennrich et al.](https://www.aclweb.org/anthology/P16-1162)].
Our implementation is much faster in training and tokenization than [Hugging Face](https://github.com/huggingface/tokenizers), [fastBPE](https://github.com/glample/fastBPE)
and [SentencePiece](https://github.com/google/sentencepiece). In some test cases, it is 90 times faster.
Check out our [benchmark](benchmark.md) results.
Key advantages:
* Multithreading for training and tokenization
* The algorithm has `O(N)` complexity, where `N` is the length of training data
* Highly efficient implementation in C++
* Python wrapper and command-line interface
Extra features:
* BPE-dropout (as described in [Provilkov et al, 2019](https://arxiv.org/abs/1910.13267))
As well as in the algorithm from the original paper, ours does not consider tokens
that cross word boundaries. Just like in [SentencePiece](https://github.com/google/sentencepiece), all space symbols were replaced by meta symbol "▁" (U+2581). It allows sequences of tokens to be converted back to text and for word boundaries to be restored.
For example, the phrase ```Blazingly fast tokenization!``` can be tokenized into
`['▁Bl', 'az', 'ingly', '▁fast', '▁token', 'ization', '!']`
## Installation
```bash
pip install youtokentome
```
## Python interface
### Example
Let's start with a self-contained example.
```python
import random
import youtokentome as yttm
train_data_path = "train_data.txt"
model_path = "example.model"
# Generating random file with training data
# 10000 lines with 100 characters in each line
n_lines = 10000
n_characters = 100
with open(train_data_path, "w") as fout:
for _ in range(n_lines):
print("".join([random.choice("abcd ") for _ in range(n_characters)]), file=fout)
# Generating random text
test_text = "".join([random.choice("abcde ") for _ in range(100)])
# Training model
yttm.BPE.train(data=train_data_path, vocab_size=5000, model=model_path)
# Loading model
bpe = yttm.BPE(model=model_path)
# Two types of tokenization
print(bpe.encode([test_text], output_type=yttm.OutputType.ID))
print(bpe.encode([test_text], output_type=yttm.OutputType.SUBWORD))
```
### Training model
```python
youtokentome.BPE.train(data, model, vocab_size, coverage, n_threads=-1, pad_id=0, unk_id=1, bos_id=2, eos_id=3)
```
Trains BPE model and saves to file.
**Args:**
* `data`: string, path to file with training data
* `model`: string, path to where the trained model will be saved
* `vocab_size`: int, number of tokens in the final vocabulary
* `coverage`: float, fraction of characters covered by the model. Must be in the range [0, 1]. A good value to use is about 0.9999.
* `n_threads`: int, number of parallel threads used to run. If -1 is passed, then all available threads are going to be used. Note that the number of threads is limited by 8 (see [benchmark](benchmark.md#number-of-threads)).
* `pad_id`: int, reserved id for padding
* `unk_id`: int, reserved id for unknown symbols
* `bos_id`: int, reserved id for begin of sentence token
* `eos_id`: int, reserved id for end of sentence token
**Returns**: Class `youtokentome.BPE` with the loaded model.
### Model loading
```python
youtokentome.BPE(model, n_threads=-1)
```
Class constructor. Loads the trained model.
* `model`: string, path to the trained model
* `n_threads`: int, number of parallel threads used to run.
If equal to -1, then the maximum number of threads available will be used.
### Methods
Class `youtokentome.BPE` has the following methods:
#### encode
```python
encode(self, sentences, output_type=yttm.OutputType.ID, bos=False, eos=False, reverse=False, dropout_prob=0)
```
**Args:**
* `sentences`: list of strings, sentences for tokenization.
* `output_type`: enum, sentence can be tokenized to ids or subwords. Use `OutputType.ID` for ids and `OutputType.SUBWORD` for subwords.
* `bos`: bool, if True then token “beginning of sentence” will be added
* `eos`: bool, if True then token “end of sentence” will be added
* `reverse`: bool, if True the output sequence of tokens will be reversed
* `dropout_prob`: float, BPE-dropout probability (the probability of a merge being dropped). Must be in the range [0, 1].
**Returns:** If `output_type` is equal to `youtokentome.OutputType.ID` or `youtokentome.OutputType.SUBWORD`
then a list of lists of integers or list of lists of strings will be returned
respectively.
#### vocab
```python
vocab(self)
```
**Returns:** A list `vocab_size` strings. The i-th string in the list corresponds
to i-th subword.
#### vocab_size
```python
vocab_size(self)
```
**Returns:** int. Size of vocabulary.
#### subword_to_id
```python
subword_to_id(self, subword)
```
**Args:**
* `subword`: string.
**Returns:**
Integer from the range [0, vocab_size-1]. Id of subword or,
if there is no such subword in the vocabulary, `unk_id` will be
returned.
#### id_to_subword
```python
id_to_subword(self, id)
```
**Args:**
* `id`: int, must be in the range [0, vocab_size-1]
**Returns:** string. Subword from vocabulary by id.
#### decode
```python
decode(self, ids, ignore_ids=None)
```
Convert each id to subword and concatenate with space symbol.
**Args:**
* `ids`: list of lists of integers. All integers must be in the range [0, vocab_size-1]
* `ignore_ids`: collection of integers. These indices would be ignored during the decoding. All integers must be in the range [0, vocab_size-1] [default: None]
**Returns:** List of strings.
## Command line interface
### Example
```bash
$ yttm bpe --data TRAINING_DATA_FILE --model OUTPUT_MODEL_FILE --vocab_size 2000
$ yttm encode --model OUTPUT_MODEL_FILE --output_type subword < TEST_DATA_FILE > ENCODED_DATA
```
### Supported commands
`YouTokenToMe` supports the following commands:
```
$ yttm --help
Usage: yttm [OPTIONS] COMMAND [ARGS]...
Options:
--help Show this message and exit.
Commands:
bpe Train BPE model.
decode Decode ids to text.
encode Encode text to ids or subwords.
vocab Print list of learned subwords.
```
Command `bpe` allows you to train Byte Pair Encoding model based on a text file.
```
$ yttm bpe --help
Usage: yttm bpe [OPTIONS]
Train BPE model.
Options:
--data PATH Training data file path. [required]
--model PATH Output model file path. [required]
--vocab_size INTEGER Number of tokens in the final vocabulary. [required]
--coverage FLOAT Fraction of characters covered by the model. [default: 1.0]
--n_threads INTEGER Number of threads. [default: -1]
--pad_id INTEGER Padding token id. [default: 0]
--unk_id INTEGER Unknown token id. [default: 1]
--bos_id INTEGER 'Begin of sentence' token id. [default: 2]
--eos_id INTEGER 'End of sentence' token id. [default: 3]
--help Show this message and exit.
```
Apply BPE encoding for a corpus of sentences. Use `stdin` for input and `stdout` for output.
By default, encoding works in parallel using `n_threads` threads. Number of threads is limited by
8 (see [benchmark](benchmark.md#number-of-threads)).
With the `--stream` option, `--n_threads` will be ignored and all sentences will be processed one by one.
Each sentence will be tokenized and written to the `stdout` before the next sentence is read.
```
$ yttm encode --help
Usage: yttm encode [OPTIONS]
Encode text to ids or subwords.
Options:
--model PATH Path to file with learned model. [required]
--output_type TEXT 'id' or 'subword'. [required]
--n_threads INTEGER Number of threads. [default: -1]
--bos Add tab 'begin of sentence'.
--eos Add tab 'end of sentence'.
--reverse Reverse output sequence of tokens.
--stream Process each line before reading the next one.
--dropout_prob BPE-dropout probability (the probability of a merge being dropped). [default: 0]
--help Show this message and exit.
```
Print vocabulary. This can be useful for understanding the model.
```
$ yttm vocab --help
Usage: yttm vocab [OPTIONS]
Print list of learned subwords.
Options:
--model PATH Path to file with learned model. [required]
--verbose Add merging rules.
--help Show this message and exit.
```
Convert ids back to text. Use `stdin` for input and `stdout` for output.
```
$ yttm decode --help
Usage: yttm decode [OPTIONS]
Decode ids to text.
Options:
--model PATH Path to file with learned model. [required]
--ignore_ids List of indices to ignore for decoding. Example: --ignore_ids=1,2,3
--help Show this message and exit.
```
%prep
%autosetup -n youtokentome-1.0.6
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-youtokentome -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.6-1
- Package Spec generated
|