1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
%global _empty_manifest_terminate_build 0
Name: pytorch3d
Version: 0.7.5
Release: 1
Summary: PyTorch3D is FAIR's library of reusable components for deep learning with 3D data
License: BSD License
URL: https://pytorch3d.org/
Source0: https://github.com/facebookresearch/pytorch3d/archive/refs/tags/v%{version}.zip
BuildRequires: g++
Requires: python3-fvcore
Requires: python3-iopath
%description
PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch.
Key features include:
- Data structure for storing and manipulating triangle meshes
- Efficient operations on triangle meshes (projective transformations, graph convolution, sampling, loss functions)
- A differentiable mesh renderer
- Implicitron, see its README, a framework for new-view synthesis via implicit representations.
%package -n python3-pytorch3d
Summary: PyTorch3D is FAIR's library of reusable components for deep learning with 3D data
Provides: python-pytorch3d
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-setuptools_scm
BuildRequires: python3-pbr
BuildRequires: python3-pip
BuildRequires: python3-wheel
BuildRequires: python3-hatchling
BuildRequires: python3-pytorch
%description -n python3-pytorch3d
PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch.
Key features include:
- Data structure for storing and manipulating triangle meshes
- Efficient operations on triangle meshes (projective transformations, graph convolution, sampling, loss functions)
- A differentiable mesh renderer
- Implicitron, see its README, a framework for new-view synthesis via implicit representations.
%package help
Summary: Development documents and examples for pytorch3d
Provides: python3-pytorch3d-doc
%description help
PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch.
Key features include:
- Data structure for storing and manipulating triangle meshes
- Efficient operations on triangle meshes (projective transformations, graph convolution, sampling, loss functions)
- A differentiable mesh renderer
- Implicitron, see its README, a framework for new-view synthesis via implicit representations.
%prep
%autosetup -p1 -n %{name}-%{version}
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/doclist.lst .
%files -n python3-pytorch3d
%doc *.md
%license LICENSE
%{_bindir}/pytorch3d_implicitron_runner
%{_bindir}/pytorch3d_implicitron_visualizer
%{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Jan 28 2024 Binshuo Zu <274620705z@gmail.com> - 0.7.5-1
- Package init
|