summaryrefslogtreecommitdiff
path: root/tensordict.spec
blob: 434821c8d37ee7aa5a3a4854e8ceba7d8375352e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
%global _empty_manifest_terminate_build 0

Name:		tensordict
Version:	0.2.1
Release:	1
Summary:	TensorDict is a pytorch dedicated tensor container.
License:	MIT
URL:		https://pytorch.org/tensordict
Source0:	https://github.com/pytorch/tensordict/archive/refs/tags/v%{version}.tar.gz#/%{name}-%{version}.tar.gz

Requires:	python3-numpy
Requires:	python3-pytorch
Requires:	python3-cloudpickle

%description
TensorDict is a dictionary-like class that inherits properties from tensors, such as indexing, 
shape operations, casting to device or point-to-point communication in distributed settings.
The main purpose of TensorDict is to make code-bases more readable and modular by abstracting away tailored operations.

%package -n python3-tensordict
Summary:	TensorDict is a pytorch dedicated tensor container.
Provides:	python-tensordict

BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-setuptools_scm
BuildRequires:	python3-pip
BuildRequires:	python3-wheel
BuildRequires:	python3-hatchling
BuildRequires:	python3-pytorch

%description -n python3-tensordict
TensorDict is a dictionary-like class that inherits properties from tensors, such as indexing, 
shape operations, casting to device or point-to-point communication in distributed settings.
The main purpose of TensorDict is to make code-bases more readable and modular by abstracting away tailored operations.

%package help
Summary:	Development documents and examples for tensordict
Provides:	python3-tensordict-doc

%description help
TensorDict is a dictionary-like class that inherits properties from tensors, such as indexing, 
shape operations, casting to device or point-to-point communication in distributed settings.
The main purpose of TensorDict is to make code-bases more readable and modular by abstracting away tailored operations.


%prep
%autosetup -p1 -n %{name}-%{version}

%build
%pyproject_build

%install
%pyproject_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/doclist.lst .

%files -n python3-tensordict
%doc *.md
%license LICENSE
%{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Sun Jan 28 2024 Binshuo Zu <274620705z@gmail.com> - 0.2.1-1
- Package init