diff options
author | CoprDistGit <copr-devel@lists.fedorahosted.org> | 2023-03-06 12:43:45 +0000 |
---|---|---|
committer | CoprDistGit <copr-devel@lists.fedorahosted.org> | 2023-03-06 12:43:45 +0000 |
commit | 41a07b7648ca86cfcb2be57bff7c41eea9a73293 (patch) | |
tree | 9a68ac03209ccf000e14e71f186b84dd068cadbb | |
parent | ca2ec3ea2b248edec514d86b97f98bbfd706e190 (diff) |
automatic import of python-Bottleneck
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-Bottleneck.spec | 213 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 215 insertions, 0 deletions
@@ -0,0 +1 @@ +/Bottleneck-1.3.6.tar.gz diff --git a/python-Bottleneck.spec b/python-Bottleneck.spec new file mode 100644 index 0000000..8a69331 --- /dev/null +++ b/python-Bottleneck.spec @@ -0,0 +1,213 @@ +%global _empty_manifest_terminate_build 0 +Name: python-Bottleneck +Version: 1.3.6 +Release: 1 +Summary: Fast NumPy array functions written in C +License: Simplified BSD +URL: https://github.com/pydata/bottleneck +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/4a/4f/2ee4ee0494384891fa7784d774affbcf2ad6c9ddb33b1fd211da86739513/Bottleneck-1.3.6.tar.gz + +Requires: python3-sphinx +Requires: python3-numpy +Requires: python3-numpydoc +Requires: python3-gitpython + +%description +Bottleneck comes with a benchmark suite:: + >>> bn.bench() + Bottleneck performance benchmark + Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4 + Speed is NumPy time divided by Bottleneck time + NaN means approx one-fifth NaNs; float64 used + no NaN no NaN NaN no NaN NaN + (100,) (1000,1000)(1000,1000)(1000,1000)(1000,1000) + axis=0 axis=0 axis=0 axis=1 axis=1 + nansum 29.7 1.4 1.6 2.0 2.1 + nanmean 99.0 2.0 1.8 3.2 2.5 + nanstd 145.6 1.8 1.8 2.7 2.5 + nanvar 138.4 1.8 1.8 2.8 2.5 + nanmin 27.6 0.5 1.7 0.7 2.4 + nanmax 26.6 0.6 1.6 0.7 2.5 + median 120.6 1.3 4.9 1.1 5.7 + nanmedian 117.8 5.0 5.7 4.8 5.5 + ss 13.2 1.2 1.3 1.5 1.5 + nanargmin 66.8 5.5 4.8 3.5 7.1 + nanargmax 57.6 2.9 5.1 2.5 5.3 + anynan 10.2 0.3 52.3 0.8 41.6 + allnan 15.1 196.0 156.3 135.8 111.2 + rankdata 45.9 1.2 1.2 2.1 2.1 + nanrankdata 50.5 1.4 1.3 2.4 2.3 + partition 3.3 1.1 1.6 1.0 1.5 + argpartition 3.4 1.2 1.5 1.1 1.6 + replace 9.0 1.5 1.5 1.5 1.5 + push 1565.6 5.9 7.0 13.0 10.9 + move_sum 2159.3 31.1 83.6 186.9 182.5 + move_mean 6264.3 66.2 111.9 361.1 246.5 + move_std 8653.6 86.5 163.7 232.0 317.7 + move_var 8856.0 96.3 171.6 267.9 332.9 + move_min 1186.6 13.4 30.9 23.5 45.0 + move_max 1188.0 14.6 29.9 23.5 46.0 + move_argmin 2568.3 33.3 61.0 49.2 86.8 + move_argmax 2475.8 30.9 58.6 45.0 82.8 + move_median 2236.9 153.9 151.4 171.3 166.9 + move_rank 847.1 1.2 1.4 2.3 2.6 +You can also run a detailed benchmark for a single function using, for +example, the command:: + >>> bn.bench_detailed("move_median", fraction_nan=0.3) +Only arrays with data type (dtype) int32, int64, float32, and float64 are +accelerated. All other dtypes result in calls to slower, unaccelerated +functions. In the rare case of a byte-swapped input array (e.g. a big-endian +array on a little-endian operating system) the function will not be +accelerated regardless of dtype. + +%package -n python3-Bottleneck +Summary: Fast NumPy array functions written in C +Provides: python-Bottleneck +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +BuildRequires: python3-cffi +BuildRequires: gcc +BuildRequires: gdb +%description -n python3-Bottleneck +Bottleneck comes with a benchmark suite:: + >>> bn.bench() + Bottleneck performance benchmark + Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4 + Speed is NumPy time divided by Bottleneck time + NaN means approx one-fifth NaNs; float64 used + no NaN no NaN NaN no NaN NaN + (100,) (1000,1000)(1000,1000)(1000,1000)(1000,1000) + axis=0 axis=0 axis=0 axis=1 axis=1 + nansum 29.7 1.4 1.6 2.0 2.1 + nanmean 99.0 2.0 1.8 3.2 2.5 + nanstd 145.6 1.8 1.8 2.7 2.5 + nanvar 138.4 1.8 1.8 2.8 2.5 + nanmin 27.6 0.5 1.7 0.7 2.4 + nanmax 26.6 0.6 1.6 0.7 2.5 + median 120.6 1.3 4.9 1.1 5.7 + nanmedian 117.8 5.0 5.7 4.8 5.5 + ss 13.2 1.2 1.3 1.5 1.5 + nanargmin 66.8 5.5 4.8 3.5 7.1 + nanargmax 57.6 2.9 5.1 2.5 5.3 + anynan 10.2 0.3 52.3 0.8 41.6 + allnan 15.1 196.0 156.3 135.8 111.2 + rankdata 45.9 1.2 1.2 2.1 2.1 + nanrankdata 50.5 1.4 1.3 2.4 2.3 + partition 3.3 1.1 1.6 1.0 1.5 + argpartition 3.4 1.2 1.5 1.1 1.6 + replace 9.0 1.5 1.5 1.5 1.5 + push 1565.6 5.9 7.0 13.0 10.9 + move_sum 2159.3 31.1 83.6 186.9 182.5 + move_mean 6264.3 66.2 111.9 361.1 246.5 + move_std 8653.6 86.5 163.7 232.0 317.7 + move_var 8856.0 96.3 171.6 267.9 332.9 + move_min 1186.6 13.4 30.9 23.5 45.0 + move_max 1188.0 14.6 29.9 23.5 46.0 + move_argmin 2568.3 33.3 61.0 49.2 86.8 + move_argmax 2475.8 30.9 58.6 45.0 82.8 + move_median 2236.9 153.9 151.4 171.3 166.9 + move_rank 847.1 1.2 1.4 2.3 2.6 +You can also run a detailed benchmark for a single function using, for +example, the command:: + >>> bn.bench_detailed("move_median", fraction_nan=0.3) +Only arrays with data type (dtype) int32, int64, float32, and float64 are +accelerated. All other dtypes result in calls to slower, unaccelerated +functions. In the rare case of a byte-swapped input array (e.g. a big-endian +array on a little-endian operating system) the function will not be +accelerated regardless of dtype. + +%package help +Summary: Development documents and examples for Bottleneck +Provides: python3-Bottleneck-doc +%description help +Bottleneck comes with a benchmark suite:: + >>> bn.bench() + Bottleneck performance benchmark + Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4 + Speed is NumPy time divided by Bottleneck time + NaN means approx one-fifth NaNs; float64 used + no NaN no NaN NaN no NaN NaN + (100,) (1000,1000)(1000,1000)(1000,1000)(1000,1000) + axis=0 axis=0 axis=0 axis=1 axis=1 + nansum 29.7 1.4 1.6 2.0 2.1 + nanmean 99.0 2.0 1.8 3.2 2.5 + nanstd 145.6 1.8 1.8 2.7 2.5 + nanvar 138.4 1.8 1.8 2.8 2.5 + nanmin 27.6 0.5 1.7 0.7 2.4 + nanmax 26.6 0.6 1.6 0.7 2.5 + median 120.6 1.3 4.9 1.1 5.7 + nanmedian 117.8 5.0 5.7 4.8 5.5 + ss 13.2 1.2 1.3 1.5 1.5 + nanargmin 66.8 5.5 4.8 3.5 7.1 + nanargmax 57.6 2.9 5.1 2.5 5.3 + anynan 10.2 0.3 52.3 0.8 41.6 + allnan 15.1 196.0 156.3 135.8 111.2 + rankdata 45.9 1.2 1.2 2.1 2.1 + nanrankdata 50.5 1.4 1.3 2.4 2.3 + partition 3.3 1.1 1.6 1.0 1.5 + argpartition 3.4 1.2 1.5 1.1 1.6 + replace 9.0 1.5 1.5 1.5 1.5 + push 1565.6 5.9 7.0 13.0 10.9 + move_sum 2159.3 31.1 83.6 186.9 182.5 + move_mean 6264.3 66.2 111.9 361.1 246.5 + move_std 8653.6 86.5 163.7 232.0 317.7 + move_var 8856.0 96.3 171.6 267.9 332.9 + move_min 1186.6 13.4 30.9 23.5 45.0 + move_max 1188.0 14.6 29.9 23.5 46.0 + move_argmin 2568.3 33.3 61.0 49.2 86.8 + move_argmax 2475.8 30.9 58.6 45.0 82.8 + move_median 2236.9 153.9 151.4 171.3 166.9 + move_rank 847.1 1.2 1.4 2.3 2.6 +You can also run a detailed benchmark for a single function using, for +example, the command:: + >>> bn.bench_detailed("move_median", fraction_nan=0.3) +Only arrays with data type (dtype) int32, int64, float32, and float64 are +accelerated. All other dtypes result in calls to slower, unaccelerated +functions. In the rare case of a byte-swapped input array (e.g. a big-endian +array on a little-endian operating system) the function will not be +accelerated regardless of dtype. + +%prep +%autosetup -n Bottleneck-1.3.6 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-Bottleneck -f filelist.lst +%dir %{python3_sitearch}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon Mar 06 2023 Python_Bot <Python_Bot@openeuler.org> - 1.3.6-1 +- Package Spec generated @@ -0,0 +1 @@ +b1ddbc83daf8456f4fef61c98d94ee80 Bottleneck-1.3.6.tar.gz |