summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <copr-devel@lists.fedorahosted.org>2023-03-06 12:43:45 +0000
committerCoprDistGit <copr-devel@lists.fedorahosted.org>2023-03-06 12:43:45 +0000
commit41a07b7648ca86cfcb2be57bff7c41eea9a73293 (patch)
tree9a68ac03209ccf000e14e71f186b84dd068cadbb
parentca2ec3ea2b248edec514d86b97f98bbfd706e190 (diff)
automatic import of python-Bottleneck
-rw-r--r--.gitignore1
-rw-r--r--python-Bottleneck.spec213
-rw-r--r--sources1
3 files changed, 215 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..a8ecec1 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/Bottleneck-1.3.6.tar.gz
diff --git a/python-Bottleneck.spec b/python-Bottleneck.spec
new file mode 100644
index 0000000..8a69331
--- /dev/null
+++ b/python-Bottleneck.spec
@@ -0,0 +1,213 @@
+%global _empty_manifest_terminate_build 0
+Name: python-Bottleneck
+Version: 1.3.6
+Release: 1
+Summary: Fast NumPy array functions written in C
+License: Simplified BSD
+URL: https://github.com/pydata/bottleneck
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/4a/4f/2ee4ee0494384891fa7784d774affbcf2ad6c9ddb33b1fd211da86739513/Bottleneck-1.3.6.tar.gz
+
+Requires: python3-sphinx
+Requires: python3-numpy
+Requires: python3-numpydoc
+Requires: python3-gitpython
+
+%description
+Bottleneck comes with a benchmark suite::
+ >>> bn.bench()
+ Bottleneck performance benchmark
+ Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
+ Speed is NumPy time divided by Bottleneck time
+ NaN means approx one-fifth NaNs; float64 used
+ no NaN no NaN NaN no NaN NaN
+ (100,) (1000,1000)(1000,1000)(1000,1000)(1000,1000)
+ axis=0 axis=0 axis=0 axis=1 axis=1
+ nansum 29.7 1.4 1.6 2.0 2.1
+ nanmean 99.0 2.0 1.8 3.2 2.5
+ nanstd 145.6 1.8 1.8 2.7 2.5
+ nanvar 138.4 1.8 1.8 2.8 2.5
+ nanmin 27.6 0.5 1.7 0.7 2.4
+ nanmax 26.6 0.6 1.6 0.7 2.5
+ median 120.6 1.3 4.9 1.1 5.7
+ nanmedian 117.8 5.0 5.7 4.8 5.5
+ ss 13.2 1.2 1.3 1.5 1.5
+ nanargmin 66.8 5.5 4.8 3.5 7.1
+ nanargmax 57.6 2.9 5.1 2.5 5.3
+ anynan 10.2 0.3 52.3 0.8 41.6
+ allnan 15.1 196.0 156.3 135.8 111.2
+ rankdata 45.9 1.2 1.2 2.1 2.1
+ nanrankdata 50.5 1.4 1.3 2.4 2.3
+ partition 3.3 1.1 1.6 1.0 1.5
+ argpartition 3.4 1.2 1.5 1.1 1.6
+ replace 9.0 1.5 1.5 1.5 1.5
+ push 1565.6 5.9 7.0 13.0 10.9
+ move_sum 2159.3 31.1 83.6 186.9 182.5
+ move_mean 6264.3 66.2 111.9 361.1 246.5
+ move_std 8653.6 86.5 163.7 232.0 317.7
+ move_var 8856.0 96.3 171.6 267.9 332.9
+ move_min 1186.6 13.4 30.9 23.5 45.0
+ move_max 1188.0 14.6 29.9 23.5 46.0
+ move_argmin 2568.3 33.3 61.0 49.2 86.8
+ move_argmax 2475.8 30.9 58.6 45.0 82.8
+ move_median 2236.9 153.9 151.4 171.3 166.9
+ move_rank 847.1 1.2 1.4 2.3 2.6
+You can also run a detailed benchmark for a single function using, for
+example, the command::
+ >>> bn.bench_detailed("move_median", fraction_nan=0.3)
+Only arrays with data type (dtype) int32, int64, float32, and float64 are
+accelerated. All other dtypes result in calls to slower, unaccelerated
+functions. In the rare case of a byte-swapped input array (e.g. a big-endian
+array on a little-endian operating system) the function will not be
+accelerated regardless of dtype.
+
+%package -n python3-Bottleneck
+Summary: Fast NumPy array functions written in C
+Provides: python-Bottleneck
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+BuildRequires: python3-cffi
+BuildRequires: gcc
+BuildRequires: gdb
+%description -n python3-Bottleneck
+Bottleneck comes with a benchmark suite::
+ >>> bn.bench()
+ Bottleneck performance benchmark
+ Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
+ Speed is NumPy time divided by Bottleneck time
+ NaN means approx one-fifth NaNs; float64 used
+ no NaN no NaN NaN no NaN NaN
+ (100,) (1000,1000)(1000,1000)(1000,1000)(1000,1000)
+ axis=0 axis=0 axis=0 axis=1 axis=1
+ nansum 29.7 1.4 1.6 2.0 2.1
+ nanmean 99.0 2.0 1.8 3.2 2.5
+ nanstd 145.6 1.8 1.8 2.7 2.5
+ nanvar 138.4 1.8 1.8 2.8 2.5
+ nanmin 27.6 0.5 1.7 0.7 2.4
+ nanmax 26.6 0.6 1.6 0.7 2.5
+ median 120.6 1.3 4.9 1.1 5.7
+ nanmedian 117.8 5.0 5.7 4.8 5.5
+ ss 13.2 1.2 1.3 1.5 1.5
+ nanargmin 66.8 5.5 4.8 3.5 7.1
+ nanargmax 57.6 2.9 5.1 2.5 5.3
+ anynan 10.2 0.3 52.3 0.8 41.6
+ allnan 15.1 196.0 156.3 135.8 111.2
+ rankdata 45.9 1.2 1.2 2.1 2.1
+ nanrankdata 50.5 1.4 1.3 2.4 2.3
+ partition 3.3 1.1 1.6 1.0 1.5
+ argpartition 3.4 1.2 1.5 1.1 1.6
+ replace 9.0 1.5 1.5 1.5 1.5
+ push 1565.6 5.9 7.0 13.0 10.9
+ move_sum 2159.3 31.1 83.6 186.9 182.5
+ move_mean 6264.3 66.2 111.9 361.1 246.5
+ move_std 8653.6 86.5 163.7 232.0 317.7
+ move_var 8856.0 96.3 171.6 267.9 332.9
+ move_min 1186.6 13.4 30.9 23.5 45.0
+ move_max 1188.0 14.6 29.9 23.5 46.0
+ move_argmin 2568.3 33.3 61.0 49.2 86.8
+ move_argmax 2475.8 30.9 58.6 45.0 82.8
+ move_median 2236.9 153.9 151.4 171.3 166.9
+ move_rank 847.1 1.2 1.4 2.3 2.6
+You can also run a detailed benchmark for a single function using, for
+example, the command::
+ >>> bn.bench_detailed("move_median", fraction_nan=0.3)
+Only arrays with data type (dtype) int32, int64, float32, and float64 are
+accelerated. All other dtypes result in calls to slower, unaccelerated
+functions. In the rare case of a byte-swapped input array (e.g. a big-endian
+array on a little-endian operating system) the function will not be
+accelerated regardless of dtype.
+
+%package help
+Summary: Development documents and examples for Bottleneck
+Provides: python3-Bottleneck-doc
+%description help
+Bottleneck comes with a benchmark suite::
+ >>> bn.bench()
+ Bottleneck performance benchmark
+ Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
+ Speed is NumPy time divided by Bottleneck time
+ NaN means approx one-fifth NaNs; float64 used
+ no NaN no NaN NaN no NaN NaN
+ (100,) (1000,1000)(1000,1000)(1000,1000)(1000,1000)
+ axis=0 axis=0 axis=0 axis=1 axis=1
+ nansum 29.7 1.4 1.6 2.0 2.1
+ nanmean 99.0 2.0 1.8 3.2 2.5
+ nanstd 145.6 1.8 1.8 2.7 2.5
+ nanvar 138.4 1.8 1.8 2.8 2.5
+ nanmin 27.6 0.5 1.7 0.7 2.4
+ nanmax 26.6 0.6 1.6 0.7 2.5
+ median 120.6 1.3 4.9 1.1 5.7
+ nanmedian 117.8 5.0 5.7 4.8 5.5
+ ss 13.2 1.2 1.3 1.5 1.5
+ nanargmin 66.8 5.5 4.8 3.5 7.1
+ nanargmax 57.6 2.9 5.1 2.5 5.3
+ anynan 10.2 0.3 52.3 0.8 41.6
+ allnan 15.1 196.0 156.3 135.8 111.2
+ rankdata 45.9 1.2 1.2 2.1 2.1
+ nanrankdata 50.5 1.4 1.3 2.4 2.3
+ partition 3.3 1.1 1.6 1.0 1.5
+ argpartition 3.4 1.2 1.5 1.1 1.6
+ replace 9.0 1.5 1.5 1.5 1.5
+ push 1565.6 5.9 7.0 13.0 10.9
+ move_sum 2159.3 31.1 83.6 186.9 182.5
+ move_mean 6264.3 66.2 111.9 361.1 246.5
+ move_std 8653.6 86.5 163.7 232.0 317.7
+ move_var 8856.0 96.3 171.6 267.9 332.9
+ move_min 1186.6 13.4 30.9 23.5 45.0
+ move_max 1188.0 14.6 29.9 23.5 46.0
+ move_argmin 2568.3 33.3 61.0 49.2 86.8
+ move_argmax 2475.8 30.9 58.6 45.0 82.8
+ move_median 2236.9 153.9 151.4 171.3 166.9
+ move_rank 847.1 1.2 1.4 2.3 2.6
+You can also run a detailed benchmark for a single function using, for
+example, the command::
+ >>> bn.bench_detailed("move_median", fraction_nan=0.3)
+Only arrays with data type (dtype) int32, int64, float32, and float64 are
+accelerated. All other dtypes result in calls to slower, unaccelerated
+functions. In the rare case of a byte-swapped input array (e.g. a big-endian
+array on a little-endian operating system) the function will not be
+accelerated regardless of dtype.
+
+%prep
+%autosetup -n Bottleneck-1.3.6
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-Bottleneck -f filelist.lst
+%dir %{python3_sitearch}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon Mar 06 2023 Python_Bot <Python_Bot@openeuler.org> - 1.3.6-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..5acf932
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+b1ddbc83daf8456f4fef61c98d94ee80 Bottleneck-1.3.6.tar.gz