diff options
author | CoprDistGit <infra@openeuler.org> | 2023-06-20 09:17:41 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-06-20 09:17:41 +0000 |
commit | ea47fd9c6cc09081d8c04465628880cd9f5ded6a (patch) | |
tree | 2f31b1664005ed0aeef387471f0577ffc98cb29a | |
parent | 3ca9bdd8ba9cd4befc1c0eb39c78775314c7db68 (diff) |
automatic import of python-PyRKHSstatsopeneuler20.03
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-pyrkhsstats.spec | 261 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 263 insertions, 0 deletions
@@ -0,0 +1 @@ +/PyRKHSstats-2.1.0.tar.gz diff --git a/python-pyrkhsstats.spec b/python-pyrkhsstats.spec new file mode 100644 index 0000000..90897ee --- /dev/null +++ b/python-pyrkhsstats.spec @@ -0,0 +1,261 @@ +%global _empty_manifest_terminate_build 0 +Name: python-PyRKHSstats +Version: 2.1.0 +Release: 1 +Summary: A Python package for kernel methods in Statistics/ML. +License: GNU General Public License v3.0 +URL: https://github.com/Black-Swan-ICL/PyRKHSstats +Source0: https://mirrors.aliyun.com/pypi/web/packages/68/7f/01cf21d15ef653abdd9c7bb00fb772467c8618cf19ba38944f833c4f224b/PyRKHSstats-2.1.0.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-scipy +Requires: python3-pandas +Requires: python3-scikit-learn +Requires: python3-GPy +Requires: python3-pyyaml + +%description +# PyRKHSstats +A Python package implementing a variety of statistical/machine learning methods +that rely on kernels (e.g. HSIC for independence testing). + +## Overview +- Independence testing with HSIC (Hilbert-Schmidt Independence Criterion), as + introduced in + [A Kernel Statistical Test of Independence](https://papers.nips.cc/paper/2007/hash/d5cfead94f5350c12c322b5b664544c1-Abstract.html), + A. Gretton, K. Fukumizu, C. Hui Teo, L. Song, B. Schölkopf, and A. + Smola (NIPS 2007). +- Measurement of conditional independence with HSCIC (Hilbert-Schmidt + Conditional Independence Criterion), as introduced in + [A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings](https://papers.nips.cc/paper/2020/hash/f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html), + J. Park and K. Muandet (NeurIPS 2020). +- The Kernel-based Conditional Independence Test (KCIT), as introduced in + [Kernel-based Conditional Independence Test and Application in Causal + Discovery](https://arxiv.org/abs/1202.3775), K. Zhang, J. Peters, D. Janzing, + B. Schölkopf (UAI 2011). +- Two-sample testing (also known as homogeneity testing) with the MMD + (Maximum Mean Discrepancy), as presented in [A Fast, Consistent Kernel + Two-Sample Test](https://papers.nips.cc/paper/2009/hash/9246444d94f081e3549803b928260f56-Abstract.html), + A. Gretton, K. Fukumizu, Z. Harchaoui, and B. K. Sriperumbudur (NIPS 2009) + and in [A Kernel Two-Sample Test](https://jmlr.org/papers/v13/gretton12a.html), + A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola + (JMLR, volume 13, 2012). + +<br> + +| Resource | Description | +| :--- | :--- | +| HSIC | For independence testing | +| HSCIC | For the measurement of conditional independence | +| KCIT | For conditional independence testing | +| MMD | For two-sample testing | + + +## Implementations available + +The following table details the implementation schemes for the different +resources available in the package. + +| Resource | Implementation Scheme | Numpy based available | PyTorch based available | +| :--- | :--- | :----: |:----: | +| HSIC | Resampling (permuting the x<sub>i</sub>'s but leaving the y<sub>i</sub>'s unchanged) | Yes | No | +| HSIC | Gamma approximation | Yes | No | +| HSCIC | N/A | Yes | Yes | +| KCIT | Gamma approximation | Yes | No | +| KCIT | Monte Carlo simulation (weighted sum of χ<sup>2</sup> random variables)| Yes | No | +| MMD | Gram matrix spectrum | Yes | No | + +[comment]: <> (| MMD | Permutation | Yes | No |) + +<br> + +## In development +- Joint independence testing with dHSIC. +- Goodness-of-fit testing. +- Methods for time series models. +- Bayesian statistical kernel methods. +- Regression by independence maximisation. + + + +%package -n python3-PyRKHSstats +Summary: A Python package for kernel methods in Statistics/ML. +Provides: python-PyRKHSstats +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-PyRKHSstats +# PyRKHSstats +A Python package implementing a variety of statistical/machine learning methods +that rely on kernels (e.g. HSIC for independence testing). + +## Overview +- Independence testing with HSIC (Hilbert-Schmidt Independence Criterion), as + introduced in + [A Kernel Statistical Test of Independence](https://papers.nips.cc/paper/2007/hash/d5cfead94f5350c12c322b5b664544c1-Abstract.html), + A. Gretton, K. Fukumizu, C. Hui Teo, L. Song, B. Schölkopf, and A. + Smola (NIPS 2007). +- Measurement of conditional independence with HSCIC (Hilbert-Schmidt + Conditional Independence Criterion), as introduced in + [A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings](https://papers.nips.cc/paper/2020/hash/f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html), + J. Park and K. Muandet (NeurIPS 2020). +- The Kernel-based Conditional Independence Test (KCIT), as introduced in + [Kernel-based Conditional Independence Test and Application in Causal + Discovery](https://arxiv.org/abs/1202.3775), K. Zhang, J. Peters, D. Janzing, + B. Schölkopf (UAI 2011). +- Two-sample testing (also known as homogeneity testing) with the MMD + (Maximum Mean Discrepancy), as presented in [A Fast, Consistent Kernel + Two-Sample Test](https://papers.nips.cc/paper/2009/hash/9246444d94f081e3549803b928260f56-Abstract.html), + A. Gretton, K. Fukumizu, Z. Harchaoui, and B. K. Sriperumbudur (NIPS 2009) + and in [A Kernel Two-Sample Test](https://jmlr.org/papers/v13/gretton12a.html), + A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola + (JMLR, volume 13, 2012). + +<br> + +| Resource | Description | +| :--- | :--- | +| HSIC | For independence testing | +| HSCIC | For the measurement of conditional independence | +| KCIT | For conditional independence testing | +| MMD | For two-sample testing | + + +## Implementations available + +The following table details the implementation schemes for the different +resources available in the package. + +| Resource | Implementation Scheme | Numpy based available | PyTorch based available | +| :--- | :--- | :----: |:----: | +| HSIC | Resampling (permuting the x<sub>i</sub>'s but leaving the y<sub>i</sub>'s unchanged) | Yes | No | +| HSIC | Gamma approximation | Yes | No | +| HSCIC | N/A | Yes | Yes | +| KCIT | Gamma approximation | Yes | No | +| KCIT | Monte Carlo simulation (weighted sum of χ<sup>2</sup> random variables)| Yes | No | +| MMD | Gram matrix spectrum | Yes | No | + +[comment]: <> (| MMD | Permutation | Yes | No |) + +<br> + +## In development +- Joint independence testing with dHSIC. +- Goodness-of-fit testing. +- Methods for time series models. +- Bayesian statistical kernel methods. +- Regression by independence maximisation. + + + +%package help +Summary: Development documents and examples for PyRKHSstats +Provides: python3-PyRKHSstats-doc +%description help +# PyRKHSstats +A Python package implementing a variety of statistical/machine learning methods +that rely on kernels (e.g. HSIC for independence testing). + +## Overview +- Independence testing with HSIC (Hilbert-Schmidt Independence Criterion), as + introduced in + [A Kernel Statistical Test of Independence](https://papers.nips.cc/paper/2007/hash/d5cfead94f5350c12c322b5b664544c1-Abstract.html), + A. Gretton, K. Fukumizu, C. Hui Teo, L. Song, B. Schölkopf, and A. + Smola (NIPS 2007). +- Measurement of conditional independence with HSCIC (Hilbert-Schmidt + Conditional Independence Criterion), as introduced in + [A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings](https://papers.nips.cc/paper/2020/hash/f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html), + J. Park and K. Muandet (NeurIPS 2020). +- The Kernel-based Conditional Independence Test (KCIT), as introduced in + [Kernel-based Conditional Independence Test and Application in Causal + Discovery](https://arxiv.org/abs/1202.3775), K. Zhang, J. Peters, D. Janzing, + B. Schölkopf (UAI 2011). +- Two-sample testing (also known as homogeneity testing) with the MMD + (Maximum Mean Discrepancy), as presented in [A Fast, Consistent Kernel + Two-Sample Test](https://papers.nips.cc/paper/2009/hash/9246444d94f081e3549803b928260f56-Abstract.html), + A. Gretton, K. Fukumizu, Z. Harchaoui, and B. K. Sriperumbudur (NIPS 2009) + and in [A Kernel Two-Sample Test](https://jmlr.org/papers/v13/gretton12a.html), + A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola + (JMLR, volume 13, 2012). + +<br> + +| Resource | Description | +| :--- | :--- | +| HSIC | For independence testing | +| HSCIC | For the measurement of conditional independence | +| KCIT | For conditional independence testing | +| MMD | For two-sample testing | + + +## Implementations available + +The following table details the implementation schemes for the different +resources available in the package. + +| Resource | Implementation Scheme | Numpy based available | PyTorch based available | +| :--- | :--- | :----: |:----: | +| HSIC | Resampling (permuting the x<sub>i</sub>'s but leaving the y<sub>i</sub>'s unchanged) | Yes | No | +| HSIC | Gamma approximation | Yes | No | +| HSCIC | N/A | Yes | Yes | +| KCIT | Gamma approximation | Yes | No | +| KCIT | Monte Carlo simulation (weighted sum of χ<sup>2</sup> random variables)| Yes | No | +| MMD | Gram matrix spectrum | Yes | No | + +[comment]: <> (| MMD | Permutation | Yes | No |) + +<br> + +## In development +- Joint independence testing with dHSIC. +- Goodness-of-fit testing. +- Methods for time series models. +- Bayesian statistical kernel methods. +- Regression by independence maximisation. + + + +%prep +%autosetup -n PyRKHSstats-2.1.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-PyRKHSstats -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 2.1.0-1 +- Package Spec generated @@ -0,0 +1 @@ +8272c4a12de6963813861677c64b2099 PyRKHSstats-2.1.0.tar.gz |