summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-06-20 09:17:41 +0000
committerCoprDistGit <infra@openeuler.org>2023-06-20 09:17:41 +0000
commitea47fd9c6cc09081d8c04465628880cd9f5ded6a (patch)
tree2f31b1664005ed0aeef387471f0577ffc98cb29a
parent3ca9bdd8ba9cd4befc1c0eb39c78775314c7db68 (diff)
automatic import of python-PyRKHSstatsopeneuler20.03
-rw-r--r--.gitignore1
-rw-r--r--python-pyrkhsstats.spec261
-rw-r--r--sources1
3 files changed, 263 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..3bac165 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/PyRKHSstats-2.1.0.tar.gz
diff --git a/python-pyrkhsstats.spec b/python-pyrkhsstats.spec
new file mode 100644
index 0000000..90897ee
--- /dev/null
+++ b/python-pyrkhsstats.spec
@@ -0,0 +1,261 @@
+%global _empty_manifest_terminate_build 0
+Name: python-PyRKHSstats
+Version: 2.1.0
+Release: 1
+Summary: A Python package for kernel methods in Statistics/ML.
+License: GNU General Public License v3.0
+URL: https://github.com/Black-Swan-ICL/PyRKHSstats
+Source0: https://mirrors.aliyun.com/pypi/web/packages/68/7f/01cf21d15ef653abdd9c7bb00fb772467c8618cf19ba38944f833c4f224b/PyRKHSstats-2.1.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-scipy
+Requires: python3-pandas
+Requires: python3-scikit-learn
+Requires: python3-GPy
+Requires: python3-pyyaml
+
+%description
+# PyRKHSstats
+A Python package implementing a variety of statistical/machine learning methods
+that rely on kernels (e.g. HSIC for independence testing).
+
+## Overview
+- Independence testing with HSIC (Hilbert-Schmidt Independence Criterion), as
+ introduced in
+ [A Kernel Statistical Test of Independence](https://papers.nips.cc/paper/2007/hash/d5cfead94f5350c12c322b5b664544c1-Abstract.html),
+ A. Gretton, K. Fukumizu, C. Hui Teo, L. Song, B. Sch&#246;lkopf, and A.
+ Smola (NIPS 2007).
+- Measurement of conditional independence with HSCIC (Hilbert-Schmidt
+ Conditional Independence Criterion), as introduced in
+ [A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings](https://papers.nips.cc/paper/2020/hash/f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html),
+ J. Park and K. Muandet (NeurIPS 2020).
+- The Kernel-based Conditional Independence Test (KCIT), as introduced in
+ [Kernel-based Conditional Independence Test and Application in Causal
+ Discovery](https://arxiv.org/abs/1202.3775), K. Zhang, J. Peters, D. Janzing,
+ B. Sch&#246;lkopf (UAI 2011).
+- Two-sample testing (also known as homogeneity testing) with the MMD
+ (Maximum Mean Discrepancy), as presented in [A Fast, Consistent Kernel
+ Two-Sample Test](https://papers.nips.cc/paper/2009/hash/9246444d94f081e3549803b928260f56-Abstract.html),
+ A. Gretton, K. Fukumizu, Z. Harchaoui, and B. K. Sriperumbudur (NIPS 2009)
+ and in [A Kernel Two-Sample Test](https://jmlr.org/papers/v13/gretton12a.html),
+ A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Sch&#246;lkopf, and A. Smola
+ (JMLR, volume 13, 2012).
+
+<br>
+
+| Resource | Description |
+| :--- | :--- |
+| HSIC | For independence testing |
+| HSCIC | For the measurement of conditional independence |
+| KCIT | For conditional independence testing |
+| MMD | For two-sample testing |
+
+
+## Implementations available
+
+The following table details the implementation schemes for the different
+resources available in the package.
+
+| Resource | Implementation Scheme | Numpy based available | PyTorch based available |
+| :--- | :--- | :----: |:----: |
+| HSIC | Resampling (permuting the x<sub>i</sub>'s but leaving the y<sub>i</sub>'s unchanged) | Yes | No |
+| HSIC | Gamma approximation | Yes | No |
+| HSCIC | N/A | Yes | Yes |
+| KCIT | Gamma approximation | Yes | No |
+| KCIT | Monte Carlo simulation (weighted sum of &chi;<sup>2</sup> random variables)| Yes | No |
+| MMD | Gram matrix spectrum | Yes | No |
+
+[comment]: <> (| MMD | Permutation | Yes | No |)
+
+<br>
+
+## In development
+- Joint independence testing with dHSIC.
+- Goodness-of-fit testing.
+- Methods for time series models.
+- Bayesian statistical kernel methods.
+- Regression by independence maximisation.
+
+
+
+%package -n python3-PyRKHSstats
+Summary: A Python package for kernel methods in Statistics/ML.
+Provides: python-PyRKHSstats
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-PyRKHSstats
+# PyRKHSstats
+A Python package implementing a variety of statistical/machine learning methods
+that rely on kernels (e.g. HSIC for independence testing).
+
+## Overview
+- Independence testing with HSIC (Hilbert-Schmidt Independence Criterion), as
+ introduced in
+ [A Kernel Statistical Test of Independence](https://papers.nips.cc/paper/2007/hash/d5cfead94f5350c12c322b5b664544c1-Abstract.html),
+ A. Gretton, K. Fukumizu, C. Hui Teo, L. Song, B. Sch&#246;lkopf, and A.
+ Smola (NIPS 2007).
+- Measurement of conditional independence with HSCIC (Hilbert-Schmidt
+ Conditional Independence Criterion), as introduced in
+ [A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings](https://papers.nips.cc/paper/2020/hash/f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html),
+ J. Park and K. Muandet (NeurIPS 2020).
+- The Kernel-based Conditional Independence Test (KCIT), as introduced in
+ [Kernel-based Conditional Independence Test and Application in Causal
+ Discovery](https://arxiv.org/abs/1202.3775), K. Zhang, J. Peters, D. Janzing,
+ B. Sch&#246;lkopf (UAI 2011).
+- Two-sample testing (also known as homogeneity testing) with the MMD
+ (Maximum Mean Discrepancy), as presented in [A Fast, Consistent Kernel
+ Two-Sample Test](https://papers.nips.cc/paper/2009/hash/9246444d94f081e3549803b928260f56-Abstract.html),
+ A. Gretton, K. Fukumizu, Z. Harchaoui, and B. K. Sriperumbudur (NIPS 2009)
+ and in [A Kernel Two-Sample Test](https://jmlr.org/papers/v13/gretton12a.html),
+ A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Sch&#246;lkopf, and A. Smola
+ (JMLR, volume 13, 2012).
+
+<br>
+
+| Resource | Description |
+| :--- | :--- |
+| HSIC | For independence testing |
+| HSCIC | For the measurement of conditional independence |
+| KCIT | For conditional independence testing |
+| MMD | For two-sample testing |
+
+
+## Implementations available
+
+The following table details the implementation schemes for the different
+resources available in the package.
+
+| Resource | Implementation Scheme | Numpy based available | PyTorch based available |
+| :--- | :--- | :----: |:----: |
+| HSIC | Resampling (permuting the x<sub>i</sub>'s but leaving the y<sub>i</sub>'s unchanged) | Yes | No |
+| HSIC | Gamma approximation | Yes | No |
+| HSCIC | N/A | Yes | Yes |
+| KCIT | Gamma approximation | Yes | No |
+| KCIT | Monte Carlo simulation (weighted sum of &chi;<sup>2</sup> random variables)| Yes | No |
+| MMD | Gram matrix spectrum | Yes | No |
+
+[comment]: <> (| MMD | Permutation | Yes | No |)
+
+<br>
+
+## In development
+- Joint independence testing with dHSIC.
+- Goodness-of-fit testing.
+- Methods for time series models.
+- Bayesian statistical kernel methods.
+- Regression by independence maximisation.
+
+
+
+%package help
+Summary: Development documents and examples for PyRKHSstats
+Provides: python3-PyRKHSstats-doc
+%description help
+# PyRKHSstats
+A Python package implementing a variety of statistical/machine learning methods
+that rely on kernels (e.g. HSIC for independence testing).
+
+## Overview
+- Independence testing with HSIC (Hilbert-Schmidt Independence Criterion), as
+ introduced in
+ [A Kernel Statistical Test of Independence](https://papers.nips.cc/paper/2007/hash/d5cfead94f5350c12c322b5b664544c1-Abstract.html),
+ A. Gretton, K. Fukumizu, C. Hui Teo, L. Song, B. Sch&#246;lkopf, and A.
+ Smola (NIPS 2007).
+- Measurement of conditional independence with HSCIC (Hilbert-Schmidt
+ Conditional Independence Criterion), as introduced in
+ [A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings](https://papers.nips.cc/paper/2020/hash/f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html),
+ J. Park and K. Muandet (NeurIPS 2020).
+- The Kernel-based Conditional Independence Test (KCIT), as introduced in
+ [Kernel-based Conditional Independence Test and Application in Causal
+ Discovery](https://arxiv.org/abs/1202.3775), K. Zhang, J. Peters, D. Janzing,
+ B. Sch&#246;lkopf (UAI 2011).
+- Two-sample testing (also known as homogeneity testing) with the MMD
+ (Maximum Mean Discrepancy), as presented in [A Fast, Consistent Kernel
+ Two-Sample Test](https://papers.nips.cc/paper/2009/hash/9246444d94f081e3549803b928260f56-Abstract.html),
+ A. Gretton, K. Fukumizu, Z. Harchaoui, and B. K. Sriperumbudur (NIPS 2009)
+ and in [A Kernel Two-Sample Test](https://jmlr.org/papers/v13/gretton12a.html),
+ A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Sch&#246;lkopf, and A. Smola
+ (JMLR, volume 13, 2012).
+
+<br>
+
+| Resource | Description |
+| :--- | :--- |
+| HSIC | For independence testing |
+| HSCIC | For the measurement of conditional independence |
+| KCIT | For conditional independence testing |
+| MMD | For two-sample testing |
+
+
+## Implementations available
+
+The following table details the implementation schemes for the different
+resources available in the package.
+
+| Resource | Implementation Scheme | Numpy based available | PyTorch based available |
+| :--- | :--- | :----: |:----: |
+| HSIC | Resampling (permuting the x<sub>i</sub>'s but leaving the y<sub>i</sub>'s unchanged) | Yes | No |
+| HSIC | Gamma approximation | Yes | No |
+| HSCIC | N/A | Yes | Yes |
+| KCIT | Gamma approximation | Yes | No |
+| KCIT | Monte Carlo simulation (weighted sum of &chi;<sup>2</sup> random variables)| Yes | No |
+| MMD | Gram matrix spectrum | Yes | No |
+
+[comment]: <> (| MMD | Permutation | Yes | No |)
+
+<br>
+
+## In development
+- Joint independence testing with dHSIC.
+- Goodness-of-fit testing.
+- Methods for time series models.
+- Bayesian statistical kernel methods.
+- Regression by independence maximisation.
+
+
+
+%prep
+%autosetup -n PyRKHSstats-2.1.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-PyRKHSstats -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 2.1.0-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..1ba5b55
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+8272c4a12de6963813861677c64b2099 PyRKHSstats-2.1.0.tar.gz