summaryrefslogtreecommitdiff
path: root/python-simplegp.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-simplegp.spec')
-rw-r--r--python-simplegp.spec137
1 files changed, 137 insertions, 0 deletions
diff --git a/python-simplegp.spec b/python-simplegp.spec
new file mode 100644
index 0000000..c3945e9
--- /dev/null
+++ b/python-simplegp.spec
@@ -0,0 +1,137 @@
+%global _empty_manifest_terminate_build 0
+Name: python-SimpleGP
+Version: 1.0.1
+Release: 1
+Summary: please add a summary manually as the author left a blank one
+License: MIT License
+URL: https://github.com/marcovirgolin/SimpleGP
+Source0: https://mirrors.aliyun.com/pypi/web/packages/b3/d3/cc905b49813af85c7c0b61326175cee86fac76f71b451f6d2ad61713f6f0/SimpleGP-1.0.1.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-scikit-learn
+
+%description
+# Simple Genetic Programming
+### For Symbolic Regression
+This Python 3 code is a simple implementation of genetic programming for symbolic regression, and has been developed for educational purposes.
+
+## Dependencies
+`numpy` & `sklearn`. The file `test.py` shows an example of usage.
+
+## Installation
+You can install it with pip using `python3 -m pip install --user simplegp`, or locally by downloading the code and running `python3 setup.py install --user`.
+
+## Reference
+If you use this code, please support our research by citing one (or more) of our works for which this code was made or adopted:
+
+> M. Virgolin, A. De Lorenzo, E. Medvet, F. Randone. "Learning a Formula of Interpretability to Learn Interpretable Formulas". [Parallel Problem Solving from Nature -- PPSN XVI, pp. 79--93](https://link.springer.com/chapter/10.1007/978-3-030-58115-2_6), Springer (2020). ([arXiv preprint arXiv:2004.11170](https://arxiv.org/abs/2004.11170))
+
+> M. Virgolin. "Genetic Programming is Naturally Suited to Evolve Bagging Ensembles". [arXiv preprint arXiv:2009.06037v5](https://arxiv.org/abs/2009.06037v5) (2021)
+
+## Multi-objective
+For a multi-objective version, see [pyNSGP](https://github.com/marcovirgolin/pyNSGP).
+
+
+
+
+%package -n python3-SimpleGP
+Summary: please add a summary manually as the author left a blank one
+Provides: python-SimpleGP
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-SimpleGP
+# Simple Genetic Programming
+### For Symbolic Regression
+This Python 3 code is a simple implementation of genetic programming for symbolic regression, and has been developed for educational purposes.
+
+## Dependencies
+`numpy` & `sklearn`. The file `test.py` shows an example of usage.
+
+## Installation
+You can install it with pip using `python3 -m pip install --user simplegp`, or locally by downloading the code and running `python3 setup.py install --user`.
+
+## Reference
+If you use this code, please support our research by citing one (or more) of our works for which this code was made or adopted:
+
+> M. Virgolin, A. De Lorenzo, E. Medvet, F. Randone. "Learning a Formula of Interpretability to Learn Interpretable Formulas". [Parallel Problem Solving from Nature -- PPSN XVI, pp. 79--93](https://link.springer.com/chapter/10.1007/978-3-030-58115-2_6), Springer (2020). ([arXiv preprint arXiv:2004.11170](https://arxiv.org/abs/2004.11170))
+
+> M. Virgolin. "Genetic Programming is Naturally Suited to Evolve Bagging Ensembles". [arXiv preprint arXiv:2009.06037v5](https://arxiv.org/abs/2009.06037v5) (2021)
+
+## Multi-objective
+For a multi-objective version, see [pyNSGP](https://github.com/marcovirgolin/pyNSGP).
+
+
+
+
+%package help
+Summary: Development documents and examples for SimpleGP
+Provides: python3-SimpleGP-doc
+%description help
+# Simple Genetic Programming
+### For Symbolic Regression
+This Python 3 code is a simple implementation of genetic programming for symbolic regression, and has been developed for educational purposes.
+
+## Dependencies
+`numpy` & `sklearn`. The file `test.py` shows an example of usage.
+
+## Installation
+You can install it with pip using `python3 -m pip install --user simplegp`, or locally by downloading the code and running `python3 setup.py install --user`.
+
+## Reference
+If you use this code, please support our research by citing one (or more) of our works for which this code was made or adopted:
+
+> M. Virgolin, A. De Lorenzo, E. Medvet, F. Randone. "Learning a Formula of Interpretability to Learn Interpretable Formulas". [Parallel Problem Solving from Nature -- PPSN XVI, pp. 79--93](https://link.springer.com/chapter/10.1007/978-3-030-58115-2_6), Springer (2020). ([arXiv preprint arXiv:2004.11170](https://arxiv.org/abs/2004.11170))
+
+> M. Virgolin. "Genetic Programming is Naturally Suited to Evolve Bagging Ensembles". [arXiv preprint arXiv:2009.06037v5](https://arxiv.org/abs/2009.06037v5) (2021)
+
+## Multi-objective
+For a multi-objective version, see [pyNSGP](https://github.com/marcovirgolin/pyNSGP).
+
+
+
+
+%prep
+%autosetup -n SimpleGP-1.0.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-SimpleGP -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.1-1
+- Package Spec generated