summaryrefslogtreecommitdiff
path: root/python-simplegp.spec
blob: c3945e9e3534625268cb553aa70de21acfa1ec12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
%global _empty_manifest_terminate_build 0
Name:		python-SimpleGP
Version:	1.0.1
Release:	1
Summary:	please add a summary manually as the author left a blank one
License:	MIT License
URL:		https://github.com/marcovirgolin/SimpleGP
Source0:	https://mirrors.aliyun.com/pypi/web/packages/b3/d3/cc905b49813af85c7c0b61326175cee86fac76f71b451f6d2ad61713f6f0/SimpleGP-1.0.1.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-scikit-learn

%description
# Simple Genetic Programming 
### For Symbolic Regression
This Python 3 code is a simple implementation of genetic programming for symbolic regression, and has been developed for educational purposes.

## Dependencies
`numpy` & `sklearn`. The file `test.py` shows an example of usage.

## Installation
You can install it with pip using `python3 -m pip install --user simplegp`, or locally by downloading the code and running `python3 setup.py install --user`.

## Reference
If you use this code, please support our research by citing one (or more) of our works for which this code was made or adopted: 

> M. Virgolin, A. De Lorenzo, E. Medvet, F. Randone. "Learning a Formula of Interpretability to Learn Interpretable Formulas". [Parallel Problem Solving from Nature -- PPSN XVI, pp. 79--93](https://link.springer.com/chapter/10.1007/978-3-030-58115-2_6), Springer (2020). ([arXiv preprint arXiv:2004.11170](https://arxiv.org/abs/2004.11170))

> M. Virgolin. "Genetic Programming is Naturally Suited to Evolve Bagging Ensembles". [arXiv preprint arXiv:2009.06037v5](https://arxiv.org/abs/2009.06037v5) (2021)

## Multi-objective
For a multi-objective version, see [pyNSGP](https://github.com/marcovirgolin/pyNSGP).




%package -n python3-SimpleGP
Summary:	please add a summary manually as the author left a blank one
Provides:	python-SimpleGP
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-SimpleGP
# Simple Genetic Programming 
### For Symbolic Regression
This Python 3 code is a simple implementation of genetic programming for symbolic regression, and has been developed for educational purposes.

## Dependencies
`numpy` & `sklearn`. The file `test.py` shows an example of usage.

## Installation
You can install it with pip using `python3 -m pip install --user simplegp`, or locally by downloading the code and running `python3 setup.py install --user`.

## Reference
If you use this code, please support our research by citing one (or more) of our works for which this code was made or adopted: 

> M. Virgolin, A. De Lorenzo, E. Medvet, F. Randone. "Learning a Formula of Interpretability to Learn Interpretable Formulas". [Parallel Problem Solving from Nature -- PPSN XVI, pp. 79--93](https://link.springer.com/chapter/10.1007/978-3-030-58115-2_6), Springer (2020). ([arXiv preprint arXiv:2004.11170](https://arxiv.org/abs/2004.11170))

> M. Virgolin. "Genetic Programming is Naturally Suited to Evolve Bagging Ensembles". [arXiv preprint arXiv:2009.06037v5](https://arxiv.org/abs/2009.06037v5) (2021)

## Multi-objective
For a multi-objective version, see [pyNSGP](https://github.com/marcovirgolin/pyNSGP).




%package help
Summary:	Development documents and examples for SimpleGP
Provides:	python3-SimpleGP-doc
%description help
# Simple Genetic Programming 
### For Symbolic Regression
This Python 3 code is a simple implementation of genetic programming for symbolic regression, and has been developed for educational purposes.

## Dependencies
`numpy` & `sklearn`. The file `test.py` shows an example of usage.

## Installation
You can install it with pip using `python3 -m pip install --user simplegp`, or locally by downloading the code and running `python3 setup.py install --user`.

## Reference
If you use this code, please support our research by citing one (or more) of our works for which this code was made or adopted: 

> M. Virgolin, A. De Lorenzo, E. Medvet, F. Randone. "Learning a Formula of Interpretability to Learn Interpretable Formulas". [Parallel Problem Solving from Nature -- PPSN XVI, pp. 79--93](https://link.springer.com/chapter/10.1007/978-3-030-58115-2_6), Springer (2020). ([arXiv preprint arXiv:2004.11170](https://arxiv.org/abs/2004.11170))

> M. Virgolin. "Genetic Programming is Naturally Suited to Evolve Bagging Ensembles". [arXiv preprint arXiv:2009.06037v5](https://arxiv.org/abs/2009.06037v5) (2021)

## Multi-objective
For a multi-objective version, see [pyNSGP](https://github.com/marcovirgolin/pyNSGP).




%prep
%autosetup -n SimpleGP-1.0.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-SimpleGP -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.1-1
- Package Spec generated