1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
%global _empty_manifest_terminate_build 0
Name: python-aermanager
Version: 0.3.0
Release: 1
Summary: Python package for managing AER data, including .aedat4 files, live DV streams, and interfacing with pyTorch.
License: GNU AGPLv3
URL: https://pypi.org/project/aermanager/
Source0: https://mirrors.aliyun.com/pypi/web/packages/53/2d/196b1145d85dee20ac35faf3c10e80cb4a081f39a3a06511f90734dcc8ac/aermanager-0.3.0.tar.gz
BuildArch: noarch
Requires: python3-dv
Requires: python3-tqdm
Requires: python3-numpy
Requires: python3-h5py
Requires: python3-lxml
Requires: python3-scikit-image
Requires: python3-torchvision
Requires: python3-pandas
%description
# aermanager
*Python package for managing AER data, including .aedat4 files, live DV streams, and interfacing with pyTorch.*
This software is designed for the following purposes:
- Read aedat files (v2-4) containing DVS spike trains, accumulate them, and save them in a format that can be read by a pyTorch dataset in a faster way.
- Read the files into a pyTorch dataset
- Receive frames from the DV software, queue and batch them in order to feed them to a spiking neural network simulation (`LiveDv`).
## Installation
The easiest way to install this repository is to clone it and install it with pip:
```bash
pip install aermanager
```
Alternatively, you can checkout this repository and install it.
```bash
git clone https://gitlab.com/synsense/aermanager.git
cd aermanager
pip install .
```
## Documentation
https://synsense.gitlab.io/aermanager
You can generate local documentation by running the below command at the location of the source code.
```bash
cd path/to/aermanager
python setup.py build_sphinx
```
%package -n python3-aermanager
Summary: Python package for managing AER data, including .aedat4 files, live DV streams, and interfacing with pyTorch.
Provides: python-aermanager
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-aermanager
# aermanager
*Python package for managing AER data, including .aedat4 files, live DV streams, and interfacing with pyTorch.*
This software is designed for the following purposes:
- Read aedat files (v2-4) containing DVS spike trains, accumulate them, and save them in a format that can be read by a pyTorch dataset in a faster way.
- Read the files into a pyTorch dataset
- Receive frames from the DV software, queue and batch them in order to feed them to a spiking neural network simulation (`LiveDv`).
## Installation
The easiest way to install this repository is to clone it and install it with pip:
```bash
pip install aermanager
```
Alternatively, you can checkout this repository and install it.
```bash
git clone https://gitlab.com/synsense/aermanager.git
cd aermanager
pip install .
```
## Documentation
https://synsense.gitlab.io/aermanager
You can generate local documentation by running the below command at the location of the source code.
```bash
cd path/to/aermanager
python setup.py build_sphinx
```
%package help
Summary: Development documents and examples for aermanager
Provides: python3-aermanager-doc
%description help
# aermanager
*Python package for managing AER data, including .aedat4 files, live DV streams, and interfacing with pyTorch.*
This software is designed for the following purposes:
- Read aedat files (v2-4) containing DVS spike trains, accumulate them, and save them in a format that can be read by a pyTorch dataset in a faster way.
- Read the files into a pyTorch dataset
- Receive frames from the DV software, queue and batch them in order to feed them to a spiking neural network simulation (`LiveDv`).
## Installation
The easiest way to install this repository is to clone it and install it with pip:
```bash
pip install aermanager
```
Alternatively, you can checkout this repository and install it.
```bash
git clone https://gitlab.com/synsense/aermanager.git
cd aermanager
pip install .
```
## Documentation
https://synsense.gitlab.io/aermanager
You can generate local documentation by running the below command at the location of the source code.
```bash
cd path/to/aermanager
python setup.py build_sphinx
```
%prep
%autosetup -n aermanager-0.3.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-aermanager -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.0-1
- Package Spec generated
|