diff options
author | CoprDistGit <infra@openeuler.org> | 2023-06-20 06:02:06 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-06-20 06:02:06 +0000 |
commit | 6f9a7cd8b717b2cf2e45fcb0fe11638cc37fb741 (patch) | |
tree | 493c69d14a078443d33a185c69caa73da20f0202 | |
parent | 1a65a5132a9739ed2d4081b62ed42b27aa4d519d (diff) |
automatic import of python-cuda-guass-normalopeneuler20.03
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-cuda-guass-normal.spec | 156 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 158 insertions, 0 deletions
@@ -0,0 +1 @@ +/cuda_guass_normal-1.13.tar.gz diff --git a/python-cuda-guass-normal.spec b/python-cuda-guass-normal.spec new file mode 100644 index 0000000..e396308 --- /dev/null +++ b/python-cuda-guass-normal.spec @@ -0,0 +1,156 @@ +%global _empty_manifest_terminate_build 0 +Name: python-cuda-guass-normal +Version: 1.13 +Release: 1 +Summary: A package used in DNN trainning in ATLAS analysis +License: MIT +URL: https://pypi.org/project/cuda-guass-normal/ +Source0: https://mirrors.aliyun.com/pypi/web/packages/bc/a0/9cd5883f14f949a0a8d2103d8ae811af0b41de3e54501de22f7c720cf32b/cuda_guass_normal-1.13.tar.gz +BuildArch: noarch + + +%description +Python package use cuda to normalize input variables using cuda package in ATLAS analysis + +Function use to do Guassian Normalization: +Mean: +$$\mu_{i}=\frac{\sum x_{i}\times w_{i}}{\sum w_{i}}$$ +Variance: +$$\sigma_{i}=\frac{\sum (x_{i}-\mu_{i})^{2}\times w_{i}}{\frac{N-1}{N}\times\sum w_{i}}$$ +Normalized input feature: +$$\bar{x_{i}}=\frac{x_{i}-\mu_{i}}{\sigma_{i}}$$ + +Main function: guass_normal((1),(2),(3)) + +Input: + +(1):Numpy array contain all input features you want to normalize. +(2):Numpy array used to calculate each feature's mean and variance. +(3):1-d Numpy array contains each events weight in (2) + +(1) and (2) must have the same number of columns. + +cuda_cut((1),(2),(3)): Used to calculate event yield after applying DNN cut. + +Input: +(1): 1-d numpy array include the variable you want to cut. +(2): 1-d numpy array include event weight. +(3): cut threshold + + + + +%package -n python3-cuda-guass-normal +Summary: A package used in DNN trainning in ATLAS analysis +Provides: python-cuda-guass-normal +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-cuda-guass-normal +Python package use cuda to normalize input variables using cuda package in ATLAS analysis + +Function use to do Guassian Normalization: +Mean: +$$\mu_{i}=\frac{\sum x_{i}\times w_{i}}{\sum w_{i}}$$ +Variance: +$$\sigma_{i}=\frac{\sum (x_{i}-\mu_{i})^{2}\times w_{i}}{\frac{N-1}{N}\times\sum w_{i}}$$ +Normalized input feature: +$$\bar{x_{i}}=\frac{x_{i}-\mu_{i}}{\sigma_{i}}$$ + +Main function: guass_normal((1),(2),(3)) + +Input: + +(1):Numpy array contain all input features you want to normalize. +(2):Numpy array used to calculate each feature's mean and variance. +(3):1-d Numpy array contains each events weight in (2) + +(1) and (2) must have the same number of columns. + +cuda_cut((1),(2),(3)): Used to calculate event yield after applying DNN cut. + +Input: +(1): 1-d numpy array include the variable you want to cut. +(2): 1-d numpy array include event weight. +(3): cut threshold + + + + +%package help +Summary: Development documents and examples for cuda-guass-normal +Provides: python3-cuda-guass-normal-doc +%description help +Python package use cuda to normalize input variables using cuda package in ATLAS analysis + +Function use to do Guassian Normalization: +Mean: +$$\mu_{i}=\frac{\sum x_{i}\times w_{i}}{\sum w_{i}}$$ +Variance: +$$\sigma_{i}=\frac{\sum (x_{i}-\mu_{i})^{2}\times w_{i}}{\frac{N-1}{N}\times\sum w_{i}}$$ +Normalized input feature: +$$\bar{x_{i}}=\frac{x_{i}-\mu_{i}}{\sigma_{i}}$$ + +Main function: guass_normal((1),(2),(3)) + +Input: + +(1):Numpy array contain all input features you want to normalize. +(2):Numpy array used to calculate each feature's mean and variance. +(3):1-d Numpy array contains each events weight in (2) + +(1) and (2) must have the same number of columns. + +cuda_cut((1),(2),(3)): Used to calculate event yield after applying DNN cut. + +Input: +(1): 1-d numpy array include the variable you want to cut. +(2): 1-d numpy array include event weight. +(3): cut threshold + + + + +%prep +%autosetup -n cuda_guass_normal-1.13 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-cuda-guass-normal -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 1.13-1 +- Package Spec generated @@ -0,0 +1 @@ +6df7586816e23477d7351b4c211cbccf cuda_guass_normal-1.13.tar.gz |