summaryrefslogtreecommitdiff
path: root/python-naive-bayes.spec
blob: 5dfdb268b0a17033b1b4629751eb554c353dcfdd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
%global _empty_manifest_terminate_build 0
Name:		python-naive-bayes
Version:	0.1.1
Release:	1
Summary:	Naive Bayes Text Classification
License:	MIT
URL:		https://github.com/itdxer/naive-bayes
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/ab/aa/75158e517a7678485e9a748b3117ce5edb750af643b2a916b061ee53ba4d/naive-bayes-0.1.1.tar.gz
BuildArch:	noarch


%description
# Naive Bayes Text Classifier

Text classifier based on Naive Bayes.

## Instalation

```bash
$ pip install naive-bayes
```

## Usage example

```python
from naivebayes import NaiveBayesTextClassifier

classifier = NaiveBayesTextClassifier(
    categories=categories_list,
    stop_words=stopwords_list
)
classifier.train(train_docs, train_classes)
predicted_classes = classifier.classify(test_docs)
```

`NaiveBayesTextClassifier` is a simple wrapper around `scikit-learn` class `CountVectorizer`. You can put all arguments which support this class. For more information please check `scikit-learn` official documentation.

## More examples

Check examples at `examples` folder. Before run them, install requirements in this folder.

Clone repository from github

```bash
$ git clone git@github.com:itdxer/naive-bayes.git
$ cd naive-bayes/examples
$ pip install -r requirements.txt
```

And run some example

### Usenet 20 newsgroup

```bash
$ python 20newsgroup
```

### Kaggle IMDB reviews competition

```bash
$ python imdb_reviews
```

%package -n python3-naive-bayes
Summary:	Naive Bayes Text Classification
Provides:	python-naive-bayes
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-naive-bayes
# Naive Bayes Text Classifier

Text classifier based on Naive Bayes.

## Instalation

```bash
$ pip install naive-bayes
```

## Usage example

```python
from naivebayes import NaiveBayesTextClassifier

classifier = NaiveBayesTextClassifier(
    categories=categories_list,
    stop_words=stopwords_list
)
classifier.train(train_docs, train_classes)
predicted_classes = classifier.classify(test_docs)
```

`NaiveBayesTextClassifier` is a simple wrapper around `scikit-learn` class `CountVectorizer`. You can put all arguments which support this class. For more information please check `scikit-learn` official documentation.

## More examples

Check examples at `examples` folder. Before run them, install requirements in this folder.

Clone repository from github

```bash
$ git clone git@github.com:itdxer/naive-bayes.git
$ cd naive-bayes/examples
$ pip install -r requirements.txt
```

And run some example

### Usenet 20 newsgroup

```bash
$ python 20newsgroup
```

### Kaggle IMDB reviews competition

```bash
$ python imdb_reviews
```

%package help
Summary:	Development documents and examples for naive-bayes
Provides:	python3-naive-bayes-doc
%description help
# Naive Bayes Text Classifier

Text classifier based on Naive Bayes.

## Instalation

```bash
$ pip install naive-bayes
```

## Usage example

```python
from naivebayes import NaiveBayesTextClassifier

classifier = NaiveBayesTextClassifier(
    categories=categories_list,
    stop_words=stopwords_list
)
classifier.train(train_docs, train_classes)
predicted_classes = classifier.classify(test_docs)
```

`NaiveBayesTextClassifier` is a simple wrapper around `scikit-learn` class `CountVectorizer`. You can put all arguments which support this class. For more information please check `scikit-learn` official documentation.

## More examples

Check examples at `examples` folder. Before run them, install requirements in this folder.

Clone repository from github

```bash
$ git clone git@github.com:itdxer/naive-bayes.git
$ cd naive-bayes/examples
$ pip install -r requirements.txt
```

And run some example

### Usenet 20 newsgroup

```bash
$ python 20newsgroup
```

### Kaggle IMDB reviews competition

```bash
$ python imdb_reviews
```

%prep
%autosetup -n naive-bayes-0.1.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-naive-bayes -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.1-1
- Package Spec generated