summaryrefslogtreecommitdiff
path: root/python-pyclustertend.spec
blob: 0e9cbbf1520616393d00dadb2f9171f30f8f1d3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
%global _empty_manifest_terminate_build 0
Name:		python-pyclustertend
Version:	1.8.2
Release:	1
Summary:	A package to assess cluster tendency for unsupervised learning
License:	BSD-3-Clause
URL:		https://github.com/lachhebo/pyclustertend
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/04/a5/0d0043f93d9d499c720866e9eba068da9d76ca9d519a22fd008913abf74e/pyclustertend-1.8.2.tar.gz
BuildArch:	noarch

Requires:	python3-scikit-learn
Requires:	python3-matplotlib
Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-numba

%description
# pyclustertend






[![Build Status](https://travis-ci.com/lachhebo/pyclustertend.svg?branch=master)](https://travis-ci.com/lachhebo/pyclustertend)  [![PyPi Status](https://img.shields.io/pypi/v/pyclustertend.svg?color=brightgreen)](https://pypi.org/project/pyclustertend/) [![Documentation Status](https://readthedocs.org/projects/pyclustertend/badge/?version=master)](https://pyclustertend.readthedocs.io/en/master/) [![Downloads](https://pepy.tech/badge/pyclustertend)](https://pepy.tech/project/pyclustertend) [![codecov](https://codecov.io/gh/lachhebo/pyclustertend/branch/master/graph/badge.svg)](https://codecov.io/gh/lachhebo/pyclustertend)
[![DOI](https://zenodo.org/badge/187477036.svg)](https://zenodo.org/badge/latestdoi/187477036)

pyclustertend is a python package specialized in cluster tendency. Cluster tendency consist to assess if clustering algorithms are relevant for a dataset.

Three methods for assessing cluster tendency are currently implemented and one additional method based on metrics obtained with a KMeans estimator :



- [x] Hopkins Statistics
- [x] VAT
- [x] iVAT

- [x] Metric based method (silhouette, calinksi, davies bouldin)

## Installation

```shell
    pip install pyclustertend
```

## Usage

### Example Hopkins

```python
    >>>from sklearn import datasets
    >>>from pyclustertend import hopkins
    >>>from sklearn.preprocessing import scale
    >>>X = scale(datasets.load_iris().data)
    >>>hopkins(X,150)
    0.18950453452838564
```

### Example VAT

```python
    >>>from sklearn import datasets
    >>>from pyclustertend import vat
    >>>from sklearn.preprocessing import scale
    >>>X = scale(datasets.load_iris().data)
    >>>vat(X)
```

<img height="350" src="https://raw.githubusercontent.com/lachhebo/pyclustertend/screenshots/vat.png" />

### Example iVat

```python
    >>>from sklearn import datasets
    >>>from pyclustertend import ivat
    >>>from sklearn.preprocessing import scale
    >>>X = scale(datasets.load_iris().data)
    >>>ivat(X)
```

<img height="350" src="https://raw.githubusercontent.com/lachhebo/pyclustertend/screenshots/ivat.png" />

## Notes

It's preferable to scale the data before using hopkins or vat algorithm as they use distance between observations. Moreover, vat and ivat algorithms
do not really fit to massive databases. A first solution is to sample the data before using those algorithms. 


%package -n python3-pyclustertend
Summary:	A package to assess cluster tendency for unsupervised learning
Provides:	python-pyclustertend
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-pyclustertend
# pyclustertend






[![Build Status](https://travis-ci.com/lachhebo/pyclustertend.svg?branch=master)](https://travis-ci.com/lachhebo/pyclustertend)  [![PyPi Status](https://img.shields.io/pypi/v/pyclustertend.svg?color=brightgreen)](https://pypi.org/project/pyclustertend/) [![Documentation Status](https://readthedocs.org/projects/pyclustertend/badge/?version=master)](https://pyclustertend.readthedocs.io/en/master/) [![Downloads](https://pepy.tech/badge/pyclustertend)](https://pepy.tech/project/pyclustertend) [![codecov](https://codecov.io/gh/lachhebo/pyclustertend/branch/master/graph/badge.svg)](https://codecov.io/gh/lachhebo/pyclustertend)
[![DOI](https://zenodo.org/badge/187477036.svg)](https://zenodo.org/badge/latestdoi/187477036)

pyclustertend is a python package specialized in cluster tendency. Cluster tendency consist to assess if clustering algorithms are relevant for a dataset.

Three methods for assessing cluster tendency are currently implemented and one additional method based on metrics obtained with a KMeans estimator :



- [x] Hopkins Statistics
- [x] VAT
- [x] iVAT

- [x] Metric based method (silhouette, calinksi, davies bouldin)

## Installation

```shell
    pip install pyclustertend
```

## Usage

### Example Hopkins

```python
    >>>from sklearn import datasets
    >>>from pyclustertend import hopkins
    >>>from sklearn.preprocessing import scale
    >>>X = scale(datasets.load_iris().data)
    >>>hopkins(X,150)
    0.18950453452838564
```

### Example VAT

```python
    >>>from sklearn import datasets
    >>>from pyclustertend import vat
    >>>from sklearn.preprocessing import scale
    >>>X = scale(datasets.load_iris().data)
    >>>vat(X)
```

<img height="350" src="https://raw.githubusercontent.com/lachhebo/pyclustertend/screenshots/vat.png" />

### Example iVat

```python
    >>>from sklearn import datasets
    >>>from pyclustertend import ivat
    >>>from sklearn.preprocessing import scale
    >>>X = scale(datasets.load_iris().data)
    >>>ivat(X)
```

<img height="350" src="https://raw.githubusercontent.com/lachhebo/pyclustertend/screenshots/ivat.png" />

## Notes

It's preferable to scale the data before using hopkins or vat algorithm as they use distance between observations. Moreover, vat and ivat algorithms
do not really fit to massive databases. A first solution is to sample the data before using those algorithms. 


%package help
Summary:	Development documents and examples for pyclustertend
Provides:	python3-pyclustertend-doc
%description help
# pyclustertend






[![Build Status](https://travis-ci.com/lachhebo/pyclustertend.svg?branch=master)](https://travis-ci.com/lachhebo/pyclustertend)  [![PyPi Status](https://img.shields.io/pypi/v/pyclustertend.svg?color=brightgreen)](https://pypi.org/project/pyclustertend/) [![Documentation Status](https://readthedocs.org/projects/pyclustertend/badge/?version=master)](https://pyclustertend.readthedocs.io/en/master/) [![Downloads](https://pepy.tech/badge/pyclustertend)](https://pepy.tech/project/pyclustertend) [![codecov](https://codecov.io/gh/lachhebo/pyclustertend/branch/master/graph/badge.svg)](https://codecov.io/gh/lachhebo/pyclustertend)
[![DOI](https://zenodo.org/badge/187477036.svg)](https://zenodo.org/badge/latestdoi/187477036)

pyclustertend is a python package specialized in cluster tendency. Cluster tendency consist to assess if clustering algorithms are relevant for a dataset.

Three methods for assessing cluster tendency are currently implemented and one additional method based on metrics obtained with a KMeans estimator :



- [x] Hopkins Statistics
- [x] VAT
- [x] iVAT

- [x] Metric based method (silhouette, calinksi, davies bouldin)

## Installation

```shell
    pip install pyclustertend
```

## Usage

### Example Hopkins

```python
    >>>from sklearn import datasets
    >>>from pyclustertend import hopkins
    >>>from sklearn.preprocessing import scale
    >>>X = scale(datasets.load_iris().data)
    >>>hopkins(X,150)
    0.18950453452838564
```

### Example VAT

```python
    >>>from sklearn import datasets
    >>>from pyclustertend import vat
    >>>from sklearn.preprocessing import scale
    >>>X = scale(datasets.load_iris().data)
    >>>vat(X)
```

<img height="350" src="https://raw.githubusercontent.com/lachhebo/pyclustertend/screenshots/vat.png" />

### Example iVat

```python
    >>>from sklearn import datasets
    >>>from pyclustertend import ivat
    >>>from sklearn.preprocessing import scale
    >>>X = scale(datasets.load_iris().data)
    >>>ivat(X)
```

<img height="350" src="https://raw.githubusercontent.com/lachhebo/pyclustertend/screenshots/ivat.png" />

## Notes

It's preferable to scale the data before using hopkins or vat algorithm as they use distance between observations. Moreover, vat and ivat algorithms
do not really fit to massive databases. A first solution is to sample the data before using those algorithms. 


%prep
%autosetup -n pyclustertend-1.8.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-pyclustertend -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.8.2-1
- Package Spec generated