diff options
author | CoprDistGit <infra@openeuler.org> | 2023-06-20 04:37:06 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-06-20 04:37:06 +0000 |
commit | 8f0c3786d1501b6cdeebd34d34be1833427b18f9 (patch) | |
tree | 49ddb81a51c3fd5298e4a972d3d94691df334bb3 | |
parent | cee668dc92e19403ab71893d234209ff7befc6cf (diff) |
automatic import of python-pygnaopeneuler20.03
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-pygna.spec | 465 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 467 insertions, 0 deletions
@@ -0,0 +1 @@ +/pygna-3.3.1.tar.gz diff --git a/python-pygna.spec b/python-pygna.spec new file mode 100644 index 0000000..9140c00 --- /dev/null +++ b/python-pygna.spec @@ -0,0 +1,465 @@ +%global _empty_manifest_terminate_build 0 +Name: python-pygna +Version: 3.3.1 +Release: 1 +Summary: Geneset Network Analysis +License: MIT +URL: https://github.com/stracquadaniolab/pygna +Source0: https://mirrors.aliyun.com/pypi/web/packages/82/63/56e835cd86a4070e90a7d5d6e59bda2eec44cf36393958a2722b685790cb/pygna-3.3.1.tar.gz +BuildArch: noarch + +Requires: python3-pandas +Requires: python3-numpy +Requires: python3-scipy +Requires: python3-matplotlib +Requires: python3-pyyaml +Requires: python3-tables +Requires: python3-seaborn +Requires: python3-palettable +Requires: python3-networkx +Requires: python3-statsmodels +Requires: python3-argh +Requires: python3-mygene + +%description +# PyGNA: a Python framework for geneset network analysis + + +[](https://anaconda.org/stracquadaniolab/pygna) + + + +PyGNA is a framework for statistical network analysis of high-throughput experiments. It can +be used both as a standalone command line application or it can be used as API +to develop custom analyses. + +For an overview of PyGNA functionalities check the infographic below or dive into our [Getting started](#getting-started) tour. + + + +## Installation + +The easiest and fastest way to install `pygna` using `conda`: + + $ conda install -c stracquadaniolab -c bioconda -c conda-forge pygna + +Alternatively you can install it through `pip`: + + $ pip install pygna + +We also provide a docker image installation with the latest version of PyGNA. +It can be easily executed from the command line from DockerHub: + + $ docker run stracquadaniolab/pygna/pygna:latest + +or GitHub Packages: + + $ docker run docker.pkg.github.com/stracquadaniolab/pygna/pygna:latest + + +which will show the PyGNA command line help. + +## Getting started + +A typical `pygna` analysis consists of 3 steps: + +1. Generate the RWR and SP matrices for the network you are using ( once they are generated, you won't need to repeat the same step again) +2. Make sure that the input genesets are in the right format. If a network uses entrez ID, and your file is in HUGO symbols, use the pygna utility for the name conversion. +3. Run the analysis you are interested into. +4. Once you have the output tables, you can choose to visualize one or more plots. + +Otherwise you can check our [snakemake workflow](https://github.com/stracquadaniolab/workflow-pygna) for the full geneset analysis; +our workflow contains sample data that you can use to familiarize with our software. + + +The examples below show some basic analysis that can be carried out with pygna. + +### Example 1: Running pygna GNT analysis + +Running `pygna` on this input as follows: + + $ cd ./your-path/min-working-example/ + + $ pygna build-rwr-diffusion barabasi.interactome.tsv --output-file interactome_RWR.hdf5 + + $ pygna test-topology-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_topology_rwr.csv --number-of-permutations 1000 --cores 4 + + $ pygna paint-datasets-stats table_topology_rwr.csv barplot_rwr.pdf + +You can look at the plot of the results in the `barplot_rwr.pdf` file, and the corresponding table in `table_topology_rwr.csv`. + +### Example 2: Running pygna GNA analysis + + $ cd ./your-path/min-working-example/ + +skip this step if the matrix is already computed + + $ pygna build-RWR-diffusion barabasi.interactome.tsv --output-file interactome_RWR.hdf5 + +The association analysis is run N x M times (N number of genesets, M number of pathways), we use only 50 permutations in this example to avoid long computations; however, the recommended value is 1000. + + $ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_association_rwr.csv -B disgenet_cancer_groups_subset.gmt --keep --number-of-permutations 100 --cores 4 + +If you don't include the --results-figure flag at the comparison step, plot the matrix as follows + + $ pygna paint-comparison-matrix table_association_rwr.csv heatmap_association_rwr.png --rwr --annotate + +The -k flag, keeps the -B geneset and permutes only on the set A. + +If setname B is not passed, the analysis is run between each couple of setnames in the geneset. + + $ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_within_comparison_rwr.csv --number-of-permutations 100 --cores 4 + + $ pygna paint-comparison-matrix table_within_comparison_rwr.csv heatmap_within_comparison_rwr.png --rwr --single-geneset + +You can look at the plot of the results in the `heatmap_within_comparison_rwr.png` file, and the corresponding table in `table_within_comparison_rwr.csv`. + + +## Documentation + +The official documentation for `pygna` can be found on [readthedocs](https://pygna.readthedocs.io/). + +## Authors + +- Viola Fanfani (v.fanfani@sms.ed.ac.uk): lead developer and mantainer. +- Fabio Cassano (fabio.cassano@ed.ac.uk): support. +- Giovanni Stracquadanio (giovanni.stracquadanio@ed.ac.uk): corresponding author. + +## Citation + +V. Fanfani, F. Cassano, and G. Stracquadanio, “PyGNA: a unified framework for geneset network analysis,” BMC Bioinformatics, vol. 21, no. 1, 2020. +DOI: https://doi.org/10.1186/s12859-020-03801-1 + +``` +@article{Fanfani2020, +author = {Fanfani, Viola and Cassano, Fabio and Stracquadanio, Giovanni}, +doi = {10.1186/s12859-020-03801-1}, +issn = {14712105}, +journal = {BMC Bioinformatics}, +number = {1}, +pmid = {33092528}, +title = {{PyGNA: a unified framework for geneset network analysis}}, +volume = {21}, +year = {2020} +} +``` + +## Issues + +Please post an issue to report a bug or request new features. + + + + +%package -n python3-pygna +Summary: Geneset Network Analysis +Provides: python-pygna +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-pygna +# PyGNA: a Python framework for geneset network analysis + + +[](https://anaconda.org/stracquadaniolab/pygna) + + + +PyGNA is a framework for statistical network analysis of high-throughput experiments. It can +be used both as a standalone command line application or it can be used as API +to develop custom analyses. + +For an overview of PyGNA functionalities check the infographic below or dive into our [Getting started](#getting-started) tour. + + + +## Installation + +The easiest and fastest way to install `pygna` using `conda`: + + $ conda install -c stracquadaniolab -c bioconda -c conda-forge pygna + +Alternatively you can install it through `pip`: + + $ pip install pygna + +We also provide a docker image installation with the latest version of PyGNA. +It can be easily executed from the command line from DockerHub: + + $ docker run stracquadaniolab/pygna/pygna:latest + +or GitHub Packages: + + $ docker run docker.pkg.github.com/stracquadaniolab/pygna/pygna:latest + + +which will show the PyGNA command line help. + +## Getting started + +A typical `pygna` analysis consists of 3 steps: + +1. Generate the RWR and SP matrices for the network you are using ( once they are generated, you won't need to repeat the same step again) +2. Make sure that the input genesets are in the right format. If a network uses entrez ID, and your file is in HUGO symbols, use the pygna utility for the name conversion. +3. Run the analysis you are interested into. +4. Once you have the output tables, you can choose to visualize one or more plots. + +Otherwise you can check our [snakemake workflow](https://github.com/stracquadaniolab/workflow-pygna) for the full geneset analysis; +our workflow contains sample data that you can use to familiarize with our software. + + +The examples below show some basic analysis that can be carried out with pygna. + +### Example 1: Running pygna GNT analysis + +Running `pygna` on this input as follows: + + $ cd ./your-path/min-working-example/ + + $ pygna build-rwr-diffusion barabasi.interactome.tsv --output-file interactome_RWR.hdf5 + + $ pygna test-topology-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_topology_rwr.csv --number-of-permutations 1000 --cores 4 + + $ pygna paint-datasets-stats table_topology_rwr.csv barplot_rwr.pdf + +You can look at the plot of the results in the `barplot_rwr.pdf` file, and the corresponding table in `table_topology_rwr.csv`. + +### Example 2: Running pygna GNA analysis + + $ cd ./your-path/min-working-example/ + +skip this step if the matrix is already computed + + $ pygna build-RWR-diffusion barabasi.interactome.tsv --output-file interactome_RWR.hdf5 + +The association analysis is run N x M times (N number of genesets, M number of pathways), we use only 50 permutations in this example to avoid long computations; however, the recommended value is 1000. + + $ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_association_rwr.csv -B disgenet_cancer_groups_subset.gmt --keep --number-of-permutations 100 --cores 4 + +If you don't include the --results-figure flag at the comparison step, plot the matrix as follows + + $ pygna paint-comparison-matrix table_association_rwr.csv heatmap_association_rwr.png --rwr --annotate + +The -k flag, keeps the -B geneset and permutes only on the set A. + +If setname B is not passed, the analysis is run between each couple of setnames in the geneset. + + $ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_within_comparison_rwr.csv --number-of-permutations 100 --cores 4 + + $ pygna paint-comparison-matrix table_within_comparison_rwr.csv heatmap_within_comparison_rwr.png --rwr --single-geneset + +You can look at the plot of the results in the `heatmap_within_comparison_rwr.png` file, and the corresponding table in `table_within_comparison_rwr.csv`. + + +## Documentation + +The official documentation for `pygna` can be found on [readthedocs](https://pygna.readthedocs.io/). + +## Authors + +- Viola Fanfani (v.fanfani@sms.ed.ac.uk): lead developer and mantainer. +- Fabio Cassano (fabio.cassano@ed.ac.uk): support. +- Giovanni Stracquadanio (giovanni.stracquadanio@ed.ac.uk): corresponding author. + +## Citation + +V. Fanfani, F. Cassano, and G. Stracquadanio, “PyGNA: a unified framework for geneset network analysis,” BMC Bioinformatics, vol. 21, no. 1, 2020. +DOI: https://doi.org/10.1186/s12859-020-03801-1 + +``` +@article{Fanfani2020, +author = {Fanfani, Viola and Cassano, Fabio and Stracquadanio, Giovanni}, +doi = {10.1186/s12859-020-03801-1}, +issn = {14712105}, +journal = {BMC Bioinformatics}, +number = {1}, +pmid = {33092528}, +title = {{PyGNA: a unified framework for geneset network analysis}}, +volume = {21}, +year = {2020} +} +``` + +## Issues + +Please post an issue to report a bug or request new features. + + + + +%package help +Summary: Development documents and examples for pygna +Provides: python3-pygna-doc +%description help +# PyGNA: a Python framework for geneset network analysis + + +[](https://anaconda.org/stracquadaniolab/pygna) + + + +PyGNA is a framework for statistical network analysis of high-throughput experiments. It can +be used both as a standalone command line application or it can be used as API +to develop custom analyses. + +For an overview of PyGNA functionalities check the infographic below or dive into our [Getting started](#getting-started) tour. + + + +## Installation + +The easiest and fastest way to install `pygna` using `conda`: + + $ conda install -c stracquadaniolab -c bioconda -c conda-forge pygna + +Alternatively you can install it through `pip`: + + $ pip install pygna + +We also provide a docker image installation with the latest version of PyGNA. +It can be easily executed from the command line from DockerHub: + + $ docker run stracquadaniolab/pygna/pygna:latest + +or GitHub Packages: + + $ docker run docker.pkg.github.com/stracquadaniolab/pygna/pygna:latest + + +which will show the PyGNA command line help. + +## Getting started + +A typical `pygna` analysis consists of 3 steps: + +1. Generate the RWR and SP matrices for the network you are using ( once they are generated, you won't need to repeat the same step again) +2. Make sure that the input genesets are in the right format. If a network uses entrez ID, and your file is in HUGO symbols, use the pygna utility for the name conversion. +3. Run the analysis you are interested into. +4. Once you have the output tables, you can choose to visualize one or more plots. + +Otherwise you can check our [snakemake workflow](https://github.com/stracquadaniolab/workflow-pygna) for the full geneset analysis; +our workflow contains sample data that you can use to familiarize with our software. + + +The examples below show some basic analysis that can be carried out with pygna. + +### Example 1: Running pygna GNT analysis + +Running `pygna` on this input as follows: + + $ cd ./your-path/min-working-example/ + + $ pygna build-rwr-diffusion barabasi.interactome.tsv --output-file interactome_RWR.hdf5 + + $ pygna test-topology-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_topology_rwr.csv --number-of-permutations 1000 --cores 4 + + $ pygna paint-datasets-stats table_topology_rwr.csv barplot_rwr.pdf + +You can look at the plot of the results in the `barplot_rwr.pdf` file, and the corresponding table in `table_topology_rwr.csv`. + +### Example 2: Running pygna GNA analysis + + $ cd ./your-path/min-working-example/ + +skip this step if the matrix is already computed + + $ pygna build-RWR-diffusion barabasi.interactome.tsv --output-file interactome_RWR.hdf5 + +The association analysis is run N x M times (N number of genesets, M number of pathways), we use only 50 permutations in this example to avoid long computations; however, the recommended value is 1000. + + $ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_association_rwr.csv -B disgenet_cancer_groups_subset.gmt --keep --number-of-permutations 100 --cores 4 + +If you don't include the --results-figure flag at the comparison step, plot the matrix as follows + + $ pygna paint-comparison-matrix table_association_rwr.csv heatmap_association_rwr.png --rwr --annotate + +The -k flag, keeps the -B geneset and permutes only on the set A. + +If setname B is not passed, the analysis is run between each couple of setnames in the geneset. + + $ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_within_comparison_rwr.csv --number-of-permutations 100 --cores 4 + + $ pygna paint-comparison-matrix table_within_comparison_rwr.csv heatmap_within_comparison_rwr.png --rwr --single-geneset + +You can look at the plot of the results in the `heatmap_within_comparison_rwr.png` file, and the corresponding table in `table_within_comparison_rwr.csv`. + + +## Documentation + +The official documentation for `pygna` can be found on [readthedocs](https://pygna.readthedocs.io/). + +## Authors + +- Viola Fanfani (v.fanfani@sms.ed.ac.uk): lead developer and mantainer. +- Fabio Cassano (fabio.cassano@ed.ac.uk): support. +- Giovanni Stracquadanio (giovanni.stracquadanio@ed.ac.uk): corresponding author. + +## Citation + +V. Fanfani, F. Cassano, and G. Stracquadanio, “PyGNA: a unified framework for geneset network analysis,” BMC Bioinformatics, vol. 21, no. 1, 2020. +DOI: https://doi.org/10.1186/s12859-020-03801-1 + +``` +@article{Fanfani2020, +author = {Fanfani, Viola and Cassano, Fabio and Stracquadanio, Giovanni}, +doi = {10.1186/s12859-020-03801-1}, +issn = {14712105}, +journal = {BMC Bioinformatics}, +number = {1}, +pmid = {33092528}, +title = {{PyGNA: a unified framework for geneset network analysis}}, +volume = {21}, +year = {2020} +} +``` + +## Issues + +Please post an issue to report a bug or request new features. + + + + +%prep +%autosetup -n pygna-3.3.1 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-pygna -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 3.3.1-1 +- Package Spec generated @@ -0,0 +1 @@ +0853c47a9a4bbb2fe54e85c54abe47d3 pygna-3.3.1.tar.gz |