summaryrefslogtreecommitdiff
path: root/python-root-numpy.spec
blob: a1652f4a91da3ea058bf7420417c942e95ec14f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
%global _empty_manifest_terminate_build 0
Name:		python-root-numpy
Version:	4.8.0
Release:	1
Summary:	The interface between ROOT and NumPy
License:	new BSD
URL:		http://scikit-hep.org/root_numpy
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/d5/5f/82f5111c22599676eb8b5f9b1bf85c38dcc7995d52cd6b4a8f5f5caa4659/root_numpy-4.8.0.tar.gz
BuildArch:	noarch


%description
.. image:: https://img.shields.io/pypi/v/root_numpy.svg
   :target: https://pypi.python.org/pypi/root_numpy
.. image:: https://api.travis-ci.org/scikit-hep/root_numpy.png
   :target: https://travis-ci.org/scikit-hep/root_numpy
.. image:: https://coveralls.io/repos/github/scikit-hep/root_numpy/badge.svg?branch=master
   :target: https://coveralls.io/github/scikit-hep/root_numpy?branch=master
.. image:: https://landscape.io/github/scikit-hep/root_numpy/master/landscape.svg?style=flat
   :target: https://landscape.io/github/scikit-hep/root_numpy/master
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.592881.svg
   :target: https://doi.org/10.5281/zenodo.592881

root_numpy is a Python extension module that provides an efficient interface
between `ROOT <http://root.cern.ch/>`_ and `NumPy <http://www.numpy.org/>`_.
root_numpy's internals are compiled C++ and can therefore handle large amounts
of data much faster than equivalent pure Python implementations.

With your ROOT data in NumPy form, make use of NumPy's `broad library
<http://docs.scipy.org/doc/numpy/reference/>`_, including fancy indexing,
slicing, broadcasting, random sampling, sorting, shape transformations, linear
algebra operations, and more. See this `tutorial
<https://docs.scipy.org/doc/numpy-dev/user/quickstart.html>`_ to get started.
NumPy is the fundamental library of the scientific Python ecosystem. Using
NumPy arrays opens up many new possibilities beyond what ROOT offers. Convert
your TTrees into NumPy arrays and use `SciPy <http://www.scipy.org/>`_ for
numerical integration and optimization, `matplotlib <http://matplotlib.org/>`_
for plotting, `pandas <http://pandas.pydata.org/>`_ for data analysis,
`statsmodels <http://statsmodels.sourceforge.net/>`_ for statistical modelling,
`scikit-learn <http://scikit-learn.org/>`_ for machine learning, and perform
quick exploratory analysis in a `Jupyter notebook <https://jupyter.org/>`_.

At the core of root_numpy are powerful and flexible functions for converting
`ROOT TTrees <https://root.cern.ch/doc/master/classTTree.html>`_ into
`structured NumPy arrays
<http://docs.scipy.org/doc/numpy/user/basics.rec.html>`_ as well as converting
NumPy arrays back into ROOT TTrees. root_numpy can convert branches of strings
and basic types such as bool, int, float, double, etc. as well as
variable-length and fixed-length multidimensional arrays and 1D or 2D vectors
of basic types and strings. root_numpy can also create columns in the output
array that are expressions involving the TTree branches similar to
``TTree::Draw()``.

%package -n python3-root-numpy
Summary:	The interface between ROOT and NumPy
Provides:	python-root-numpy
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-root-numpy
.. image:: https://img.shields.io/pypi/v/root_numpy.svg
   :target: https://pypi.python.org/pypi/root_numpy
.. image:: https://api.travis-ci.org/scikit-hep/root_numpy.png
   :target: https://travis-ci.org/scikit-hep/root_numpy
.. image:: https://coveralls.io/repos/github/scikit-hep/root_numpy/badge.svg?branch=master
   :target: https://coveralls.io/github/scikit-hep/root_numpy?branch=master
.. image:: https://landscape.io/github/scikit-hep/root_numpy/master/landscape.svg?style=flat
   :target: https://landscape.io/github/scikit-hep/root_numpy/master
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.592881.svg
   :target: https://doi.org/10.5281/zenodo.592881

root_numpy is a Python extension module that provides an efficient interface
between `ROOT <http://root.cern.ch/>`_ and `NumPy <http://www.numpy.org/>`_.
root_numpy's internals are compiled C++ and can therefore handle large amounts
of data much faster than equivalent pure Python implementations.

With your ROOT data in NumPy form, make use of NumPy's `broad library
<http://docs.scipy.org/doc/numpy/reference/>`_, including fancy indexing,
slicing, broadcasting, random sampling, sorting, shape transformations, linear
algebra operations, and more. See this `tutorial
<https://docs.scipy.org/doc/numpy-dev/user/quickstart.html>`_ to get started.
NumPy is the fundamental library of the scientific Python ecosystem. Using
NumPy arrays opens up many new possibilities beyond what ROOT offers. Convert
your TTrees into NumPy arrays and use `SciPy <http://www.scipy.org/>`_ for
numerical integration and optimization, `matplotlib <http://matplotlib.org/>`_
for plotting, `pandas <http://pandas.pydata.org/>`_ for data analysis,
`statsmodels <http://statsmodels.sourceforge.net/>`_ for statistical modelling,
`scikit-learn <http://scikit-learn.org/>`_ for machine learning, and perform
quick exploratory analysis in a `Jupyter notebook <https://jupyter.org/>`_.

At the core of root_numpy are powerful and flexible functions for converting
`ROOT TTrees <https://root.cern.ch/doc/master/classTTree.html>`_ into
`structured NumPy arrays
<http://docs.scipy.org/doc/numpy/user/basics.rec.html>`_ as well as converting
NumPy arrays back into ROOT TTrees. root_numpy can convert branches of strings
and basic types such as bool, int, float, double, etc. as well as
variable-length and fixed-length multidimensional arrays and 1D or 2D vectors
of basic types and strings. root_numpy can also create columns in the output
array that are expressions involving the TTree branches similar to
``TTree::Draw()``.

%package help
Summary:	Development documents and examples for root-numpy
Provides:	python3-root-numpy-doc
%description help
.. image:: https://img.shields.io/pypi/v/root_numpy.svg
   :target: https://pypi.python.org/pypi/root_numpy
.. image:: https://api.travis-ci.org/scikit-hep/root_numpy.png
   :target: https://travis-ci.org/scikit-hep/root_numpy
.. image:: https://coveralls.io/repos/github/scikit-hep/root_numpy/badge.svg?branch=master
   :target: https://coveralls.io/github/scikit-hep/root_numpy?branch=master
.. image:: https://landscape.io/github/scikit-hep/root_numpy/master/landscape.svg?style=flat
   :target: https://landscape.io/github/scikit-hep/root_numpy/master
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.592881.svg
   :target: https://doi.org/10.5281/zenodo.592881

root_numpy is a Python extension module that provides an efficient interface
between `ROOT <http://root.cern.ch/>`_ and `NumPy <http://www.numpy.org/>`_.
root_numpy's internals are compiled C++ and can therefore handle large amounts
of data much faster than equivalent pure Python implementations.

With your ROOT data in NumPy form, make use of NumPy's `broad library
<http://docs.scipy.org/doc/numpy/reference/>`_, including fancy indexing,
slicing, broadcasting, random sampling, sorting, shape transformations, linear
algebra operations, and more. See this `tutorial
<https://docs.scipy.org/doc/numpy-dev/user/quickstart.html>`_ to get started.
NumPy is the fundamental library of the scientific Python ecosystem. Using
NumPy arrays opens up many new possibilities beyond what ROOT offers. Convert
your TTrees into NumPy arrays and use `SciPy <http://www.scipy.org/>`_ for
numerical integration and optimization, `matplotlib <http://matplotlib.org/>`_
for plotting, `pandas <http://pandas.pydata.org/>`_ for data analysis,
`statsmodels <http://statsmodels.sourceforge.net/>`_ for statistical modelling,
`scikit-learn <http://scikit-learn.org/>`_ for machine learning, and perform
quick exploratory analysis in a `Jupyter notebook <https://jupyter.org/>`_.

At the core of root_numpy are powerful and flexible functions for converting
`ROOT TTrees <https://root.cern.ch/doc/master/classTTree.html>`_ into
`structured NumPy arrays
<http://docs.scipy.org/doc/numpy/user/basics.rec.html>`_ as well as converting
NumPy arrays back into ROOT TTrees. root_numpy can convert branches of strings
and basic types such as bool, int, float, double, etc. as well as
variable-length and fixed-length multidimensional arrays and 1D or 2D vectors
of basic types and strings. root_numpy can also create columns in the output
array that are expressions involving the TTree branches similar to
``TTree::Draw()``.

%prep
%autosetup -n root_numpy-4.8.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-root-numpy -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 4.8.0-1
- Package Spec generated